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the course of the research:

• Measure the fractal dimensions of lava flows as a function of topography, substrate, and

theology.
• The nature of lava tube systems and their relation to flow fields.

• A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow

margins.
• Development and application of a new remote sensing tool based on fractal properties.

During the course of the research, the project expanded to include the projects listed below. This

work was also funded in part by the National Science Foundation through a graduate fellowship

to Rachel Friedman.

• A comparison of what we can learn from remote sensing studies of lava flow morphology

and from studies of samples of lava flows.

• Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars.

• Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates,

inflation rates, thermal history) of flow interiors.

In addition, during the first year an educational task was included. This entailed development and

writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to

schools. This resulted in publication of EP-306, referenced below.
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Future publications

NASA Grant 3684 will be acknowledged in future publications now in preparation. These will

deal with Theo's flow (the martian meteorite analog), Hawaiian basalts, lava tube formation, and

computer modeling of lava flows with explicit attention paid to the shapes of the margins.

Although other support contributed to these studies, NASA support was essential.

Inventions

No inventions were created during the course of this work.
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Abstract. This study aims at quantifying the effect of

rheology on plan-view shapes of lava flows using frac-
tal geometry. Plan-view shapes of lava flows are impor-
tant because they reflect the processes governing flow
emplacement and may provide insight into lava-flow
rheology and dynamics. In our earlier investigation
(Bruno et al. 1992), we reported that flow margins of
basalts are fractal, having a characteristic shape regard-
less of scale. We also found we could use fractal di-

mension (D, a parameter which quantifies flow-margin
convolution) to distinguish between the two endmem-

ber types of basalts: a'a (D: 1.05-1.09) and pahoehoe
(D: 1.13-1.23). In this work, we confirm those earlier

results for basalts based on a larger database and over
a wider range of scale (0.125 m-2.4 kin). Additionally,
we analyze ten silicic flows (SiO2: 52-74%) over a sim-
ilar scale range (10 m-4.5 km). We note that silicic
flows tend to exhibit scale-dependent, or non-fractal,
behavior. We attribute this breakdown of fractal be-

havior at increased silica contents to the suppression of
small-scale features in the flow margin, due to the
higher viscosities and yield strengths of silicic flows.
These results suggest we can use the fractal properties
of flow margins as a remote-sensing tool to distinguish
flow types. Our evaluation of the nonlinear aspects of
flow dynamics indicates a tendency toward fractal be-
havior for basaltic lavas whose flow is controlled by in-
ternal fluid dynamic processes. For silicic flows, or bas-

altic flows whose flow is controlled by steep slopes, our
evaluation indicates non-fractal behavior, consistent
with our observations.

Key words: fractals - lava - rheology - remote sens-
ing
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Introduction

Plan-view shapes of lava flows reflect the processes

governing flow emplacement; they are frozen snap-
shots of the final moments of flow. As such, they pro-
vide insight into the final stages of lava-flow dynamics
and theological state. Plan-view shapes and other mor-
phological characteristics have been studied extensive-
ly and important quantitative parameters have been
developed to extract rheological properties and erup-
tion and emplacement processes of lava flows. Useful
parameters include flow length and width as indicators
of eruption rate and duration (Walker 1973: Hulme
and Fielder 1977); widths and thicknesses of flows to

estimate yield strengths (Hulme 1974); widths of distal
lobes to deduce rheological properties and SiO2 con-

tent (Wadge and Lopes 1991); channel depth and
width and surface speed to estimate viscosity (Shaw et
al. 1968); total area and volume to estimate maximum
flow rates and minimum emplacement times (Shaw
and Swanson 1970); flow length and width coupled
with levee and channel width to yield effusion rate
(Crisp and Baloga 1990); average thickness and the ra-

tio of maximum width to maximum length to calculate
eruption duration (Lopes and Kilburn 1990); and ridge
heights and spacings to estimate viscosity of flow inter-
iors (Fink and Fletcher 1978; Fink 1980). Use of these
measurements has led to improved insight into lava-
flow dynamics and planetary volcanism, but many
questions about their quantitative use remain.

We have been using a new approach to quantita-
tively characterize lava-flow morphology: the fractal

properties of flow margins. In our preliminary report
(Bruno et al. 1992), we showed that the perimeters of
basaltic flows are fractal, and have characteristic fractal

dimensions. Fractals are objects (real or mathematical)
that look the same at all scales (Mandelbrot 1967,
1983). Many geologic features exhibit such 'self-simi-
lar' behavior (e.g. rocky coastlines, topography, river
networks). A qualitative example of self-similar behav-
ior of a lava-flow margin appears in Fig. 1. We believe

that measurement of fractal properties of lava flows
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1972 Mauna Ulu

_ j______ PahoehoeFIow q
_'_-"-'___ _: _: Inside flow / 1km

_ Inside flow margin q

t 0m
Fig. 1. Margin of a typical pahoehoe flow from lhe 1972 eruption
of Mauna Ulu, Kilauea volcano with small section enlarged to
show self-similarity. The similar shapes of the entire flow margin
and the enlarged section at different scales suggests fractal behav-
ior

Fig. 2 Fractal dimensions (D) of selected curves: a D = 1.(10; b
D = 1.01: e D = 1.11).The complex curves (b, c) are longer and are
more plane-filling than (a) and thus have D>I. Since these
curves are contained in a plane (D=2), they have D between 1
and 2 (following Garcia 1991)

will shed light on flow dynamics, eruption rates, and
theology, and will prove to be a useful method for
quantifying the morphology of lava flows in inaccessi-
ble areas of the Earth as well as on other planets by

means of remote sensing.
The key parameter we derive is fractal dimension.

Fractal dimension (D) is based on a similar concept as
topological dimension (DT). For example, a line can be
contained in a plane: thus a line (Dr=l) has a lower

topological dimension than a plane (DT=2). Similarly,
a plane can be contained in a volume: thus a volume
has a greater topological dimension (DT=3) than a
plane. Fractal dimensions are also measures of the
amount of space occupied, but they do not have integ-
er values. The following example illustrates the differ-
ence between D and DT. Any curve, such as those
shown in Fig. 2, can be contained in a plane; thus
DT = 1. However, the complex curves (Fig. 2b, c) have
a much greater length than do simple curves (Fig. 2a);
therefore, these convoluted and involuted curves have

D> 1. As curves becomes increasingly complex (i.e.
plane-filling) in a self-similar fashion, D continues to
increase, approaching an upper limit at the topological
dimension of a plane (since no curve can take up more

space than a plane). Thus, the fractal dimensions of all

plan-view shapes of self-similar objects are in the
range: 1 < D < 2. The method by which fractal dimen-
sion is calculated is described below.

Bruno et al. (1992) showed that the flow margins of
both endmember types of basaltic lavas (a'a and pa-
hoehoe) are fractal, with the scale of self-similarity ex-
tending from about 0.5 m to over 2 kin. This suggests
that the processes that control the shapes of basaltic
flows at a small (say, 1 m) scale are dynamically similar

to the processes that control flow shapes at a 10 m or
100 m scale. For pahoehoe flows, this implies that the
same factors that control the outbreak of a small toe

control the outbreak of a larger eruptive unit. For a'a
flows, which have crenulation-like features superim-
posed upon larger flow lobes, self-similarity implies
that the same factors that cause these crenulations to

form (presumably related to differential shear stress)
are also responsible for forming the lobes themselves;
i.e. the lobes are large-scale crenulations. Kilburn
(1990) made a similar point in describing the fractal
properties of the surfaces of a'a flows. Also, Bruno et
al. (1992) discovered that the margins of a'a and pa-
hoehoe flows have different fractal dimensions. Pahoe-

hoe margins have higher D (typically >_ 1.15) than do
a'a flows (usually _< 1.09). This is consistent with our
observation that outlines of pahoehoe margins are

qualitatively different from a'a margins (Fig. 3); pahoe-
hoe margins tend to have many more embayments and
protrusions than the more 'linear' a'a margins.

These differences in geometry do not reflect differ-
ences in composition, but rather differences in rheolo-
gy and emplacement mechanisms. Whether an erupt-
ing basalt becomes a'a or pahoehoe depends on a crit-
ical relationship between volumetric flow rate (largely
controlled by effusion rate and ground slope), effective

viscosity and shear strength (Shaw et al. 1968; Shaw
1969; Peterson and Tilling 1980; Kilburn 1981). Pahoe-
hoe flows are associated with low terminal volumetric

f
z_,_,

4"

Fig. 3. Digitized outlines of typical a'a and pahoehoe flows from
the 1935 eruption of Mauna Loa volcano. The pahoehoe margin
is more convoluted than the a'a margin, and would be expected
to have a higher D (following Bruno et al. 1992)



flowrates(typically< 10m3/sfor Hawaiianeruptions)
and/orfluid lavas(RowlandandWalker1990).They
tendto be thin (<2m) andadvancewith a smooth
rollingmotion(CasandWright1987).Pahoehoeflows
areformedin compoundflow fieldscomposedof nu-
merousthin overlappingunits.In contrast,a'a flows
formathigherterminalflow rates.Theyaregenerally
associatedwith higher effusion rates (typically
> 10m3/sfor Hawaiianeruptions)and/orviscouslavas
(RowlandandWalker1990).A'a flowsaregenerally
thicker(typicallya fewmeters),andhavemassivein-
teriorsandclinkeryexteriors.Unlikemostpahoehoe
flows,theyareeruptedasasingleunit.A'a andpahoe-
hoelavasalsodiffer in modeof transport.Lavatubes
canplaycrucialrolesin transportof pahoehoelavas,
enablingflowoverlongdistanceswithsmallradiative
heatlosses;a'a lavastypicallyflow in openchannels.
All of thesedifferencesin terminalflow rates,flow
stylesandemplacementmechanismsleadto different
fractaldimensionsfor a'aandpahoehoeflows.

Oneof theobjectivesof investigationsof flowmor-
phologyis todeterminerheologicalpropertiesandper-
hapslava-flowcomposition,particularlySiO2andvola-
tile content.So,inadditionto basalts,wehavestudied
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moresilicicflowswithSiO_contentsrangingfrom 52
to 74wt%. Silicicflowscaneruptassingle-flowunits
characterizedby a blockymorphology.Theyarealso
often associatedwith channelformation.Thus, in
termsof bothmorphologyandemplacementmecha-
nism,somehigh-silicaflowsaresimilarto a'aflowsand
differentfrom pahoehoeflows.We havefoundthat
highersilicacontentsandtheaccompanyingincrease
inviscosityandpresumableyieldstrengthleadto qual-
itativeaswellasquantitativedifferencesin plan-view
shapes.Figure4ashowsa basaltica'a flow,character-
izedbyfairlylinearmargins,superimposeduponwhich
are small-scalefeaturesthat resemblecrenulations.
Figure4b (basalticandesite)has finger-likelobes,
hundredsof metersin diameter,andappearsless"lin-
ear'.Like basaltica'a,thisbasalticandesitehasacre-
nulatedappearance.Figure4c(andesite)alsohasmul-
tiple lobes.Here,the lobesappearshorter,stubbier
andwider(approaching1km), andthe crenulations
appeartobeabsent.Figure4d(dacite)ischaracterized
by thehighestsilicacontent.Herethe lobesarestill
wider(> 1kin)andprotrudelessfromthemainmass
of the lavaflow,causingthe flow to assumea more
bulbousappearance.Wenotethatsilicacontentisjust

Fig.4a-d.Plan-viewshapesoflavaflowsofvariouscompositions
(inorderofincreasingsilicacontent):abasalt(GalapagosIslands):
b basalticandesite(Hekla,Iceland):c andesite(MountShasta,

! km

US): d dacite (Chao, Chile). As silica content increases, flow lobes
tend to widen, thicken and protrude less from the main mass of
the lava flow, and the smaller-scale features become suppressed
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one controlling factor on plan-view shape: there are
many other controlling factors (e.g. overall volume, vo-
latile content, eruption rate). Nevertheless each range
of silica content (basalts, basaltic andesites, andesites,
and dacites/rhyolites) appears to show qualitative dif-
ferences in plan-view shape. In this paper, we quantify
the effect of rheology on perimeters of lava flows using
fractal analysis. Our objective is to define quantitative

parameters that vary with rheology, which in combina-
tion, can be used to remotely distinguish flow types.

Methodology

The fractal analysis employed in this study uses three

quantitative parameters: correlation coefficient (R2),
fractal dimension (D), and quadratic coefficient (a).
These parameters are all calculated in accordance with
the 'structured-walk' method (Richardson 1961). Al-
ternative methods include 'equipaced polygon', 'hybrid
walk' and "cell-count' methods: these are discussed in

detail in Longley and Batty (1989). We selected the

structured-walk method because it can be readily ap-
plied, both in field measurements and from remote-
sensing images. According to the structured-walk
method, the apparent length of a lava-flow margin is
measured by walking rods of different lengths along
the margin. For each rod length (r), flow margin length
(L) is determined according to the number of rod
lengths (N) needed to approximate the margin; that is,
L = Nr. By plotting log L vs log r (called a 'Richardson

plot', after Richardson 1961), fractal behavior can be
determined.

Calculating correlation coefficient (R)

Calculating fractal dimension (D)

The fractal dimension of a curve (such as a lava-flow
margin) is a measure of the curve's convolution, or de-
viation from a straight linc. The fractal dimension (D)
can be calculated as:

D=l-m,

where m is the slope of the linear least squares fit to
the data on the Richardson plot (see Turcotte 1991 for
derivation and more detailed discussion). Because
lava-flow margins are characterized by embayments
and protrusions and smaller rods traverse more of
these features, L increases as r decreases. Thus, the
Richardson plot has a negative slope (m<0) and
D>I.

Calculating quadratic coefficient (a)

In the above discussions of calculating fractal dimen-
sions and correlation coefficients, the data on the Rich-

ardson plot are fit with a least squares line. Alternate-
ly, the data can be approximated by a second-order
least squares fit and the quadratic coefficient (a) can
provide insight into fractal tendency. An ideal fractal
would be expected to have a = 0. (We tested this meth-
odology on an ideal, computer-generated fractal and
found a =0.002). A negative value of a on a Richard-
son plot (concave-downward) translates to an increase
in slope with increasing rod length, indicating a relative
lack of small-scale features. A positive value of a (con-

cave-upward) correlates with a decrease in slope with
increasing rod length, or a relative lack of large-scale
features.

A linear trend on a Richardson plot indicates the data
form a fractal set, indicating self-similarity over the
range of rod lengths used. Our criterion for linearity
(i.e. fractal behavior) is an R 2 value exceeding 0.95,
where R is the correlation coefficient of the linear least

squares fit. This criterion is chosen somewhat arbitrari-
ly, but follows that used by Mueller (1987). Care was
taken to ensure that the data array did not artificially
flatten out at long rod lengths as a result of choosing
rod lengths that are so large such that they approach
the length of the object. One can avoid this problem
altogether by letting r approach the length of the ob-

ject (that is, letting N approach 0) and plotting all the
data on a Richardson plot. One can then visually select
the linear portion of the curve and fit a least squares
line to the selected segment. Although we have found
this technique suitable in measurements of lava flows
taken from aerial photographs, it is quite impractical in
tile field, as it would involve a large number of time-
consuming measurements. We have found that choos-

ing our longest rod length such that it can be placed at
least five times along a flow margin (i.e. N =5 is a min-
imum value) is sufficient to prevent this artifact from
comwomising our results.

Field measurement technique

We applied our methodology to lava-flow margins

both in the field and on aerial photographs and other
images. The field technique requires two people, a tape
measure, and measuring rods of various lengths. We
use wooden dowels to define the smaller rod lengths
(1/8, 1/4, 1/2 and 1 m) and lightweight chains to define
the longer rod lengths (2, 4, 8 and 16 m). First, we iso-
late a section of flow margin to be measured and,
somewhat arbitrarily, choose a point along the margin
as the starting point. When the selected section of flow

margin is sufficiently long to permit, the measurement
begins with one person holding one end of the 16 m
chain at the starting point (a). A second person walks
along the flow margin until the other end of the taut
chain exactly intersects the outline. This new point (b)
becomes the next starting point. Now, as the second
person holds the end of the 16 m chain fixed over point
b, the first person walks along the boundary until the

next intersection point (c) is found. This process con-
tinues until a given number of lengths (N) are mea-
sured, and the ending point is marked. To maximize
accuracy, the measurement is replicated using the same
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Table1. Directional analysis. N values obtained by replicating
field measurement in opposite direction

r (meters) N1 N2

16 5.(X) 5.02
8 11.52 10.81
4 26.73 25.55
2 63.61 63.63
1 140.10 140.19

chain length, but this time the persons walk in the op-
posite direction (from the ending point to the starting

point). We have found that the N values from both di-
rections match well (Table 1). The results (N) are aver-

aged and L (in meters) is calculated as L =Nr. Ideally,
this first length calculation (L_) will be based on five
lengths of a 16 m chain, so L1 =80 m.

We then recalculate the length of the same segment
(L2), using a chain half of the original length (r = 8 m).
Since the 8 m chain will, in all probability, record some
undulations in the flow margin that were not encoun-
tered by the 16m chain, L2>L1, implying N2>I0.
Note that it is possible (and likely) that N2 will be a
fraction. We continue dividing the chain length by two

and repeating the procedure until at least five measur-
ements of L have been made using five different rod
lengths, i.e. the Richardson plots have a minimum of
five data points.

For sufficiently long flow-margin segments, these
data points generally correspond to chain lengths of 1,
2, 4, 8, and 16 m. In some cases, we included an addi-

tional rod length of 0.5 m. For shorter flow-margin seg-
ments that cannot accommodate five lengths of a 16 m

chain, the first (longest) chain length we chose is the
longest chain length that can be walked along the flow
margin at least five times. In these cases, rod lengths
smaller than 1 m are necessarily used to meet the min-

imum requirement of five measuring rods/chains, sepa-
rated by a factor of two in length. The smallest rod

lengths used were 0.25 m for a'a flows and 0.125 m for
pahoehoe flows.

Error and variation analyses of field measurement
technique

We conducted analyses, based on field measurements,
to confirm both the field measurement technique's

precision ('error analysis') as well as its applicability to
the entire flow margin ('variation analysis'). To assess

the precision, we conducted five replicate measure-
ments of a typical Hawaiian pahoehoe margin: a por-
tion of the 1972 Mauna Ulu pahoehoe flow (Kilauea
Volcano). We began each measurement at the same
starting point, and measured off five lengths of a 16 m
chain. Therefore, the ending points of each measure-
ment did not necessarily coincide, but instead were
chosen such that L_ =80 in each case. Each measure-
ment consisted of five data points, corresponding to

chain lengths of 1, 2, 4, 8 and 16 m. The results of this

Table 2. Error analysis (field data of 1972 Mauna Ulu pahoehoe,
segment 1)

Trial number D R 2

1 1.163
2 1.173
3 1.177
4 1.182
5 1.182

Mean D value: 1.175
Standard deviation: O.(X)8

0.980
0,977
0.988
0.980
0.990

Table 3. Variation analysis (field data of 1972 Mauna Ulu, pahoe-
hoe)

Segment number D R z

1 (avg.) 1.175 0.987
2 1.207 0.958
3 1.315 0.960
4 1.186 0.997
5 1.183 0.984
6 1.161 0.98(I
7 1.185 0.956

Mean D value: 1.202
Standard deviation: 0.(}52

error analysis are summarized in Table 2. Note the ne-

gligible variance of D: o-=0.008. Although this error
analysis implies that the technique is precise, it does
not suggest that the calculated D of a given flow-mar-
gin segment is representative of the entire flow. Differ-
ent segments of a flow margin may have different frac-
tal dimensions, and this error analysis does not meas-
ure this segment-to-segment variation. Therefore, we

performed an additional analysis on the 1972 Mauna
Ulu pahoehoe flow to rigorously study variation along
a flow margin. We measured D of seven adjacent seg-
ments of a flow margin in the field, with each segment

defined as five lengths of a 16 m chain (L_ =80). These
results, summarized in Table 3, show a significantly

larger variation, with (r= 0.05.

Photographic measurentent technique

A form of the same 'structured-walk method' was uti-
lized to determine fractal dimensions of lava flows

from aerial photographs and radar images, at scales
ranging from 1:6000 to 1:70000. We tried to use flow
margins in the centers of the images to avoid distor-
tion.

The margins were digitized and the fractal dimen-
sions calculated using the EXACT algorithm (Hay-
ward et al. 1989). Computerization facilitates changing

the rod lengths in small increments, improving the pre-
cision of the calculated D. We used 30 rod lengths,

equally spaced on a log scale. (Using more than 30 rod
lengths did not significantly improve the calculated D.)
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Consistent with the field methodology, the minimum
flow-margin segment included in the aerial photogra-
phic data set corresponds to N=5 for the longest rod
length, and fractional N-values were permitted for sub-
sequent rod lengths. The actual length of this longest

rod depends on the scale of the image, and ranges up
to 2.4 km. The minimum rod length was chosen to be
sufficiently large as to exceed both the noise inherent
in the digitization process as well as the spatial resolu-
tion of photographic images.

Error and variation analyses of photographic
measurement technique

Analogous with our analyses of the field technique, we
conduct error and variation analyses to confirm the
photographic measurement technique. Since this tech-
nique is computerized, it is perfectly reproducible: ev-

ery measurement taken from a given starting point
will, after a certain amount of rod lengths are mea-
sured, result in the exact same ending point. Thus, any
error analysis of fractal dimension would necessarily
yield ¢r=0. In order to assess variation of fractal di-
mension among different segments of flow margin, we
select the longest flow margin in the photographic da-
tabase (Hell's Half Acre, pahoehoe). We divide this
margin, which contains over 8000 data points, into sev-
en overlapping flow-margin segments. Each of these

segments contains 2000 points and overlaps adjacent
segments by 1000 points. Thus segments 1, 3, 5, and 7
are non-overlapping, as are segments 2, 4 and 6. To be
consistent with our field variation analysis, we would
ideally like to have seven non-overlapping flow seg-
ments. However, data limitations prevent this. The re-
sults of this analysis, summarized in Table 4, show a
comparable variation, with _r=0.04.

Data

The database consists of 55 lava flow margins (or seg-
ments thereof). The selected margin may be of an indi-
vidual eruptive unit or a compound flow field. In
choosing suitable candidates for measurement, we

used the following 'simple-case' criteria: (1) The mar-
gin is continuous, well-preserved and unambiguous
(e.g. not obscured by forest or younger flows): (2) It is
unaffected by external controls, such as a steep ground
slope or preexisting topography: (3) The segment is
representative of the entire margin. We categorize the

analyzed flows based on composition, separating the
basatts from the more silicic flows. We further divide
the more silicic flows based on silica content. This da-

tabase is an extension of that considered by Bruno et
al. (1992), which included 28 basaltic lava flows.

Basaltic lava .lion's

This analysis of basaltic lava flows is based on two
types of data: (1) field studies of 27 lava flows on Ki-
lauea, Mauna Loa and Hualalai volcanoes on Hawaii.

These flows have different morphologies, and include
seven a'a, 16 pahoehoe and four 'transitional' flows,
i.e. flows with morphologies intermediate between a'a

and pahoehoe: (2) aerial photographs of 18 lava flows
in Hawaii, the western US, Iceland, and the Galapagos
Islands. These flows include eight pahoehoe and ten

a'a. No transitional flows are included in the photo-
graphic database. Scales of photographs range from
1:6000 to 1:60000, which determine the rod lengths
which range from 12 m to 2.4 km. Including the field
data, the scale extends down to 0.125 m for pahoehoe
flows and 0.25 m for a'a flows. The database for basal-
tic flows is summarized in Table 5a.

Silicic lava flows

This analysis of silicic lava flows is based exclusively on
data obtained from aerial photographs and radar
images; no field data have been taken to date. The da-
tabase, summarized in Table 5b, consists of ten flows

with silica contents ranging from 52 to 74%. We divide

these flows into two categories based on silica content:
basaltic andesites (SiO5 52-58%) and more silicic

flows (SiO5 61-74% ), the latter being primarily dacites
and rhyolites. These images have scales ranging from
1:8250 to 1:70000, which determine the lengths of
rods used (10 m-4.5 kin).

Table4. Variation analysis (photographic data of HeWs Hall

Acre. pahoehoe)

Segment number D R 2

1 1.204 0.970

2 1,263 0.953

3 1.243 0.936

4 1.188 0.954

5 1.177 0.969

6 1.218 0.960

7 1.27(t 0.953

Mean D value: 1 ....

Standard deviation: 0.036

Results and discussion: basaltic lava flows

Basaltic lava flow ntargins are fracta&

Our preliminary results (Bruno et al. 1992) indicated
that both a'a and pahoehoe flow margins are fractals
within the range of scale studied (r: 0.5 m-2.4 km).

Richardson plots are linear (Fig. 5), demonstrating
self-similarity. The present analysis confirms that con-
clusion based on a larger database (45 flows) and over
a wider range of scale (r: 0.125 m-2.4 kin). Further-
more, transitional flows have also been shown to be

fractal. The only cases where the margins of basaltic



Table 5a. Database of basaltic flows

Flow description Flow type D R: Data type Substrate

(field data only)
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Kilauea Volcano, Hawaii

1971 Mauna Ulu pahoehoe 1.19 0.962 field ash

1972 Mauna Ulu pahoehoe 1.20 (avg) 0.994 field pahoehoe

1972 Mauna U[u pahoehoe 1.18 0.973 field pahoehoe
1972 Mauna Ulu pahoehoe 1.21 0.987 field pahoehoe

1972 Mauna Ulu pahoehoe 1.20 0.982 field pahoehoe
1972 Mauna Ulu a'a 1.05 I).990 field pahoehoe

1972 Mauna Ulu a'a 1.06 0.988 field pahoehoe
1974 Mauna Ulu pahoehoe 1.15 0.963 field pahoehoe

1974 Mauna Ulu transitional 1.10 0.975 field pahoehoe
1974 Mauna Ulu transitional 1.12 0.977 field pahoehoe

1974 Mauna Ulu a'a 1.07 0.987 field pahoehoe
1974 Mauna Ulu a'a 1.09 0.963 field pahoehoe

1974 Mauna Ulu a'a 1.08 0.965 field pahoehoe
1977 Pu'u O'o a'a 1.05 0.967 photo
1982 Kilauea pahoehoe 1.21 0.989 field ash

1990 Pu'u O'o pahoehoe 1.18 0.995 field pahoehoe

Mauna Loa Volcano, Hawaii

prehistoric, nr Saddle Rd pahoehoe 1.23 0.988 field a'a

prehistoric, nr Pu'u Ki pahoehoe 1.23 0.997 field a'a

prehistoric, nr Pu'u Ki pahoehoe 1.12 0.954 field pahoehoe
1843 Mauna Loa a'a 1.11 0.972 photo

1843 Mauna Loa pahoehoe 1.15 0.969 field pahoehoe
1852 Mauna Loa pahoehoe 1.13 0.992 photo

1855 Mauna Loa pahoehoe 1.19 0.960 photo

1855 Mauna Loa pahoehoe 1.17 0.986 field pahoehoe
1855 Mauna Loa pahoehoe 1.19 0.979 field a'a

1855 Mauna Loa transitional 1.09 0.961 field a'a

1859 Mauna Loa a'a 1.07 0.965 photo
1859 Mauna Loa pahoehoe 1.14 0.970 field a'a

1881 Mauna Loa pahoehoe 1.17 0.970 photo

1899 Mauna Loa a'a 1.13 0.98l photo
1935 Mauna Loa a'a 1.08 /).973 photo

1935 Mauna Loa pahoehoe 1.20 0.956 photo
1935 Mauna Loa pahoehoe l.l 5 0.988 field a'a

1942 Mauna Loa a'a 1.07 0.973 photo

Hualalai Volcano, Hawaii

1800 Hualalai a'a 1.06 0.968 photo
1800 Hualalai transitional 1.15 0.992 field
1800 Hualalai a'a 1.09 0.967 field

1800 Hualalai a'a 1.08 0.995 field

Non-Hawaiian Volcanoes

HeWs Half Acre, Idaho pahoehoe 1.21 0.981 photo
Volcano Peak, California pahoehoe 1.23 0.963 photo

Fernandina, Galapagos a'a 1.07 0.972 photo
Fernandina, Galapagos a'a 1.09 0.952 photo

Fernandina. Galapagos a'a 1.05 0.985 photo
Krafla, Iceland pahoehoe 1.16 0.971 photo

pahoehoe
pahoehoe

pahoehoe
pahoehoe

flows are not fractal are on steep slopes. In these cases

where the margin is externally controlled by a steep

ground slope, the margin becomes more linear, with
fewer convolutions.

The fractal behavior of pahoehoe and a'a flows

might be predicted by their basaltic composition. Low

viscosities of the order of 1000 Pa-s for typical eruption

temperatures of 1150°C, coupled with a negligible

yield strength for most basalts, offers no obstacle to

prevent self-similar features from being formed on a
wide range of scales. We note that at some small scale

below the detection limit of this study, fractal behavior

will eventually break down due to material proper-
ties.

Pahoehoe and a'a have different D

We find that over a wide range of geographic locations

(Hawaii, Iceland, western US, Galapagos Islands), bas-

altic lavas divide into two populations with regard to

their fractal dimensions. A'a flows generally have D
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Table5b. Database of silicie flows

Flow description SiOe (%) Flow type Scale of image Reference

l Andes Mountains 52 Bas. Andesite 1:27000

2 Andes Mountains 52 Bas. Andesite 1:13500

3 1980 Hckla, Iceland 55 Bas. Andesite 1:8250
4 1991 Hek[a, Iceland 55 Bas. Andesite 1:215(10

5 SP Flow, Arizona 57 Bas. Andesite 1:3600(I
6 Lava Park Flow. ('alitk)rnia 61 Andesite 1:30000
7 Ludent, Iceland 65 Dacite 1:825/)

8 111}4-Hckla, Iceland 65 Dacite l :825/)
9 ('hat), Chile 66 Daeilc 1 : 70(X)0

I(1 Glass Mountain, California 74 Rhyolite 1:12000

Thorpe et al. (1984)
P Francis (personal communication)
Gudmundsson et al. (1991)

Gudmundsson et al. (,1991)

Ulrich and Bailey (1987)
Smith and Carmichacl (1968)

Nicholson (personal communication)

Sigmarsson (personal communication)
Guest and Sanchez (1969)

Eichelberger (1975)
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Fig. 5. Richardson plots of typical a'a and pahoehoe flows, in me-
ters, based on field data. High R 2 values (>/).95) indicate fractal
behavior. The more convoluted margins of pahochoe flows trans-

late to higher D
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Fig. 6. Histogram of D values of a'a and pahoehoe flows based on
field and photographic data. Both field and photographic meas-
urements show pahoehoe flows have higher D than a'a flows.
Transitional flows (not shov,,n) tend to have intermediate D

ranging between 1.05 and 1.09 whereas pahoehoe flows

typically have D ranging between 1.15 and 1.23. Figure
6 summarizes our results for basaltic flows. Most (12 of

14) of the Hawaiian a'a flows have D between 1.05 and

1.09; all have D between 1.05 and 1.13. Most Hawaiian

pahoehoe flows (18 of 21) have D between 1.15 and

1.23; all have D between 1.12 and 1.23. The two pahoe-

hoe flows in the western US yield measurements of

1.21 and 1.22, consistent with the range of Hawaiian

pahoehoe flows. Similarly, the Krafla, Iceland basalt

(pahoehoe) falls into the Hawaiian pahoehoe range,
with a fracta[ dimension of 1.16. The three Galapagos

flows measured, all a'a, yield D values of 1.05, 1.07 and

1.09, in agreement with the range of Hawaiian a'a

flows. This is good evidence that regardless of the ex-

act nature of the eruption, the pahochoc flows consis-

tently have higher D than a'a flows.

By definition, fractals should have constant ranges
of fractai dimensions, regardless of the rod lengths

used to measure D. Thus, if lava flows are fractals over

the range of scale studied, the fractal dimensions ob-

tained at the field scale (0.125-16 m) should be similar

to the range of fractal dimensions obtained at the aer-

ial photographic scale (12 m-2.4 km) for a'a as well as

pahoehoe. This is confirmed by our results. All seven

a'a flows measured in the field have D between 1.05

and 1.09 (Fig. 6), the same range we find for photo-

graphic data of a'a flows (Fig. 6). All 16 pahoehoe field
measurements have D between 1.12 and 1.23, com-

pared with a range of 1.13-1.23 for photographic data

of pahoehoe flows.
For three flows (all pahoehoe), we measured mar-

gins of the same flow in the field and from aerial pho-

tographs. The fractal dimensions as measured from

aerial photographs are 1.19 (1855 Mauna Loa), 1.14

(1859 Mauna Loa) and 1.2(I (1935 Mauna Loa). Field

measurements yielded corresponding D of 1.17, 1.16

and 1.15, respectively. These variations in D are within

the variation of Table 3, and indicate fractal behav-

ior.

Flows that we have determined to be transitional

between a'a and pahoehoe based on field observations

tend to have intermediate fractal dimensions, as might

be expected. Of the four field measurements of transi-
tional flows, three have D between 1.09 and 1.12; the

fourth has a slightly higher D of 1.15.
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Fig. 7. Histogram of D values of pahoehoe flows on lhree differ-
ent substrates - preexisting a'a or pahoehoe flow, or ash - based
on field data. There is no apparent correlation between D and
substrate type

One might expect that the fractal dimensions of

flow margins would be affected by the nature of the

substrate over which they flowed. A pahoehoe margin
might be different on a preexisting a'a flow compared
to a preexisting pahoehoe flow. However, a detailed

analysis shows that D values are unaffected by differ-
ences in substrate. We took 16 field measurements of
Hawaiian pahoehoe flows. Some of these lavas flowed

upon preexisting a'a lava flows (5), others upon preex-
isting pahoehoe flows (9), still others atop ash deposits
(2). Figure 7 shows the lack of correlation between D

and substrate for these 16 flows. In one case (1855
Mauna Loa pahoehoe), we performed a controlled ex-
periment on the effect of substrate on D. We measured
D in one location where this pahoehoe flowed over a

preexisting pahoehoe, and again nearby (within
100 m), where the same flow covered an a'a substrate.

The D values obtained for this flow overlying pahoe-
hoe and a'a substrates (1.17 and 1.19, respectively) are

well within the observed variation of D along a flow
margin with a constant substrate (see Table 3).

Clearly, a pattern emerges for the fractal dimen-

sions of terrestrial basaltic lava flows. Regardless of
geographic location, lengths of rods used, or substrate

material, pahoehoe flow margins consistently have
higher D than a'a flow margins within the range of
scale studied. This is consistent both with the prelimi-
nary results of Bruno et al. (1992) and also the obser-
vation that the outlines of pahoehoe and a'a flows are
qualitatively different.

A note about topographically controlled .flows

Topographically controlled flows have been excluded
from this analysis because these external controls can

have a significant effect on D. Positive topography (e.g.
hills) may deflect or bifurcate flows, increasing the de-
gree of flow-margin convolution and therefore increas-

ing D. Negative topography (e.g. channels) serves to

2o 1

Table 6. Slope analysis. Effect of slope on fractal properties of
1972 Mauna Ulu a'a flow (ficld data)

Flow Description Flow type D R 2 Slope

1972 Mauna Ulu a'a 1.046 0.990 11.6°
1972 Mauna Ulu a'a 1.055 0.988 14.7°
1972 Mauna Ulu a'a 1.023 0.778 27.8 °

confine or channelize flows, causing the margin to be-

come more linear and thus decreasing D. In many
cases, these external controls interfere with the devel-

opment of self-similar features, and prevent fractal be-
havior. Similarly, we have found fractal behavior to

break down, with an accompanying decrease in D, on

steep (> 15-28 °) slopes (see Table 6). This tendency
toward nonfractal behavior as the gravity-driven force
on the flow increases is consistent with the results pre-
sented in Baloga et al. (1992).

hnplications for .flo w dynamics

The fractal properties of lava flows mav offer insight
into the dynamics of flow emplacement" because frac-

tals reflect nonlinear processes (e.g. Campbell 1987).
We have made a preliminary evaluation of the nonli-

near aspects of flow dynamics to obtain a qualitative
indication of the tendency toward fractal behavior.

Following earlier fluid dynamic models (e.g. Baloga
and Pieri 1986: Baloga 1987), we depict variations in
the free surface of a lava flow as due to a balance be-

tween a gravitational transport term and the fluid dy-
namic ('magmastatic') pressure gradient. Baloga et al.
(1992) define two dimensionless parameters (p and q)
to describe the relative importance of these two in-

fluences. The parameter p is the ratio of the pressure
gradient to gravitational terms: the parameter q is an
absolute measure of the gravitational force on the

flow. Baloga et al. (1992) developed a governing equa-
tion for the three-dimensional surface of a lava flow

during emplacement, based on simplifying assump-
tions:

Oh/0t + q h 2 (0h/0x) = p q O/0y [h 3 (0h/0y)]
where

p = cot 0 h0 L/t3 w 2)

q = gsin 0h_T/(uL)

and where x and y are the downstream and cross-

stream directions respectively, h =flow thickness,

t =time; ho, L, w and T are scales for thickness, length,
width and time, respectively: 0=slope, _,=kinematic
viscosity and g = gravitational acceleration.

By assuming 0h/0t is on the order of 1, Baloga et al.
(1992) evaluated this equation for selected values of p
and q (Fig. 8). High p values (right column of the ma-

trix) indicate the magmastatic pressure gradient is im-
portant relative to gravity. Low q values (top row of
matrix) indicate a weak gravitational term. Thus, in
case lc (large p, small q), the gravitational term is the

least important, both relatively (to the pressure gra-
dient) and absolutely, and the magmastatic pressure
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p<<l p=l
p>> 1

q << 1 Case la Case lb

ah/Ot= 0 3h/Ot= 0

Case lc

Assume pq = 0(1)

OtdOt= Ù/Oy[h3(Oh/OY)]

q = 1 Case 2a Case 2b
Oh/Ot+ h2(Oh/Ox)= 0 _)h/Ot+ h2(Oh/Ox)= O/Oy[h3(Oh/OY)]

q >>1 Case 3a Case 3b

Assume pq = 0(1) h2(Oh/3x) = 3/Oy[h3(Oh/OY)]

h2(Ùh/Ox)= 0

Case 2c

o = _fi)y[h3(_h/Oy)]

Case 3e

o =O/Oy[h3(_h/OY)]

Fig. 8. Matrix of special cases of the
governing equation fl)r selected val-
ues of p and q, obtained by assuming
Oh/at is on the order of 1. Some of
the equations in the matrix are linear;
others are nonlinear. The linear
equations would not be expected to
produce fractals, whereas the non-
linear equations could be expected to
produce fractals. See text for details

gradient dominates. Thus, since the lava flow is being
largely driven by internal fluid dynamic forces in case
lc, we predict that this combination of p and q is likely
to produce fractal behavior. As expected, the resulting
diffusion equation is explicitly nonlinear.

For the same q (q,_l), consider the cases corre-

sponding to p values that are low (case la) and moder-
ate (case lb), Both of these equations are linear, and
would therefore not be expected to produce fractals.

Since p is proportional to the ratio of magmastatic
pressure gradient to gravitational driving force, this has
important implications for the effect of gravity on frac-
tal behavior. When gravity plays a non-negligible role

(small or moderate p), the matrix predicts that the
lava-flow margin would not be fractal. This is consis-
tent with our field observations on Hawaii that flow
outlines are not fractals when slopes are steep.

Case 2b is nonlinear diffusion with a kinematic

transport term. Case 3b is the steady-state nonlinear
diffusion equation. These are also likely candidates for
producing fractals. Cases 2c and 3c are both nonlinear
and are dominated by the pressure gradient term

(p>> 1). These cases may be expected to produce fractal
behavior, but are difficult to interpret physically.

This analysis suggests that nonlinear processes are
common in lava flows, particularly in those cases
where the magmastatic pressure gradient influence is

significant relative to the influence of gravitational
transport. These nonlinear equations are candidates
for producing fractals, provided they are physically

plausible. Further studies are underway to (1) test this
physical plausibility by continued comparison of theor-
etical prediction and field measurements and (2) ex-
tend the underlying physics to include more complex

rheologic properties for lava flows of different compo-
sitions.

Results and discussion: silicic lava flows

Silicic lava flows are generally not fractals

Silicic lava flows are generally not fractals within the

range of scale studied (r: 10m-4.5 kin). Typical Rich-
ardson plots for basalt, basaltic andesite, and dacite are
shown in Fig. 9. Unlike the basaltic case, the Richard-
son plots for basaltic andesite and dacite are nonlinear,
characterized by relatively low R 2 values. Instead of
fractal behavior, these Richardson plots exhibit scale-

dependent behavior: longer rod lengths have steeper
slopes, most notably for the dacite. Thus, D tends to
increase as r increases, contradicting the definition of

D as a scale-independent parameter. This breakdown
of fractal behavior at increased silica content is pre-

sumably related to the higher viscosities and yield
strengths, which suppress smaller-scale features and
thus prevent self-similarity over a wide range of
scales.

Quantifying the effect of silica content on D

We seek to develop parameters that can be used re-

motely to quantify the effect of increasing silica con-
tent on fractal properties by comparing basalts, basaltic
andesites, and dacites/rhyolites for two main purposes:

(1) to gain insights into yield strength and rheological
processes, and (2) to develop a remote-sensing tool
that can differentiate flow type based on plan-view

shape. Our approach is to use the study of basaltic
flows as a benchmark for comparison with the more
silicic flows. However, we restrict our basaltic 'bench-
mark' to a'a flows, which are similar to silicic flows in

terms of both morphology and emplacement mecha-
nism.
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Fig. 9a-c. Richardson plots of representative a a'a basalt (Gala-
pagos Islands); b basaltic andesite (Hekla, Iceland): c dacite
(Chao. Chile), based on image data. Note that the data in (a) are
closely approximated by, a straight line, whereas the data for the
higher silica flows (b, c) are not linear

Ideally, we would like to compare D of silicic flows
to basaltic flows, to see how D changes with silica con-
tent. However, this approach is tricky because, as
noted above, silicic flows are generally not fractals; in-

stead D tends to increase with r for the majority of the
silicic flows. Hence, the concept of a scale-independent
fractal dimension for silicic flows is not valid. However,

small regions of logr can be locally fit with a line. Here
we introduce the concept of a 'local fractal dimension'.
This does not imply the data set is fractal, nor that the

local fractal dimension is scale-independent. It simply
exploits our observation that select regions of the data

can be fit by a line and we can estimate locally the de-
gree of convolution for a selected range of rod lengths.
Here we describe two methods used to compare silicic
and basaltic flows. Both of these methods are sensitive

to - and based on - our observation that silicic flows

do not have scale-independent fractal dimensions.

Method 1: disjoint subsets of Iogr

This method dissects the abscissa of the Richardson

plot into disjoint subsets of logr. The specific choice of
subsets (summarized in Table 7a) is constrained by the
data. Each of these subsets is fit locally by a least
squares line: that is, the Richardson plot is fit by a se-
ries of lines. For each line, the slope (m) is calculated,
and local fractal dimension D is calculated as 1 - m,
consistent with our methodology for basaltic flows.
Since this method can be used to describe fractals as

well as non-fractals, it can be employed to compare
basaltic and silicic lava flows.

Figure 10 shows sample Richardson plots of basalt,
basaltic andesite and dacite, with the abscissa dissected

according to the methodology described above. The

data on these plots are the same as shown in Fig. 9: the
only difference is the number of lines used to fit the

data. Note that for the basalt, the three segments have
essentially the same slope. This is consistent with our
conclusion that basalts are fractals. Unlike the basalts,
the basaltic andesite and dacite show noticeable differ-

ences in slope among the various subsets.

By plotting D of these segments vs. logr for the en-
tire database of silicic flows, patterns begin to emerge
among the basaltic andesites and the more silicic flows
(primarily dacites and rhyolites). The basaltic andesites
have roughly the same D values for the first two sub-

sets (Fig. 11). At rod lengths of about 100m
(logr=2 m), D starts to increase, and the values also
have a greater scatter. For the first three subsets of

logr, the dacites/rhyolites have D plotting in a rather
compact area, showing only negligible differences
among the various ranges. At iogr-2.5 m, D appar-
ently begins to increase. We can use this technique to
distinguish basaltic andesites from the more silicic

flows. Both have a general increase in D with longer r,
but the basaltic andesites tend to have greater D for
each of these categories. Furthermore, the fact that da-

cites/rhyolites show negligible changes within the first
three subsets (logr< 2.5 m), whereas the basaltic ande-
sites only remain relatively constant for the first two

Table 7. Ranges of logr (meters) for a Method 1 and b Meth-
od 2

METHOD 1
Log r (meterv)

Range 1: < 1.5
Range 2: 1.5-2.0
Range 3: 2.0-2.5
Range 4: 2.5-3.3

METHOD 2
Log r Onewrs)

Range 1: 1.7-2.8
Range 2: 1.7-2.5
Range 3: 1.3-2.0
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Fig. 10. Dissected Richardson plots of representative samples of a
a'a basalt (Galapagos Islands); b basaltic andesite (Hekla, Ice-
land): c dacite (Chao, Chile). based on photographic data (same

data as Fig. 9). Here, the abscissa is dissected into ranges of logr
(Table 7a). and each range is locally fit with a straight line. Local
fractal dimension is calculated as D = 1 - m, where m is the local

slope as calculated according to Method 1. From left to right of
these Richardson plots (increasing r), these local fractal dimen-
sions are: a D= 1.07 for each segment; b D=l.17, 1.19, 1.19, 1.46.

(c) 1.02, 1.03, 1.05, 1.20. Note that D values are constant for (a),

but not for (b) and (c). See text regarding Method 1

subsets (Iogr<2.0 m), is apparent. Figure 11 also em-

phasizes that D is not a constant function of logr for

both basaltic andesites and dacites/rhyolites, indicating

scale-dependent (non-fractal) behavior. Fractals such

as basalts have relatively constant fractal dimensions

across the various subsets. However, a sufficiently

large range of logr is needed to discern fractal and
non-fractal behavior. Note that a'a basalts and dacites

have a similar range of fractal dimensions for the first

three categories. Since data limitations often prevent

obtaining such a large range of logr, we invoke a sec-
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Fig. 11. Summary of "local fractal dimension' (D) based on photo-
graphic data for entire database of silicic flows. Basaltic andesites
are shown as open circles, whereas dacites and rhyolites are

shown as solid triangles. Note that D is not a constant function of

logr indicating non-fractal behavior

ond method to differentiate a'a basalts from dacites,

described below.

Method 2: overlapping subsets of log r

Like Method 1, this method dissects the abscissa of the

Richardson plot into distinct regions of Iogr. However,

it is different from the previous method in two re-

spects. First, the selected ranges (as summarized in Ta-

ble 7b) of log r are overlapping. Although the exact

choice of ranges is again constrained by the data, they

were intentionally chosen to overlap. This is to expli-

citly show the effect of a restricted range of rod lengths

on local fractal dimension. For example, by comparing

Region 1 (logr: 1.7-2.8m) and Region 2 (logr: 1.7-

2.5 m), we can explicitly see the effect of a restricted

range of logr (2.5-2.8 m) on D and R-'. Second, as

these regions span a greater range of logr than those in

Method 1, we have sufficient data points to fit a sec-

ond-order least squares curve to the data, in addition

to the standard first-order least squares line. In this

method, we fit a curve of the form y=ax_+bx+c, and

note the value of the leading (or quadratic) coefficient

a. In summary, this method compares three quantita-

tive parameters (D, R 2, a) for three overlapping ranges

of log r.

Applying Method 2 to dacites and rhyolites, we

note systematic variation in D, R 2 and a with range of

rod length. In four out of five cases, the longest rod

lengths (Range 1) have the highest D and the lowest
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corresponding R 2 values, whereas the shortest rod

lengths (Range 3) have the lowest D and the highest
R 2 values. Fitting a quadratic curve to Range 1 in each
case yields a negative a. For Range 3, a can be either
positive or negative. The D, R 2 and a for the dacites/
rhyolites provide remarkably consistent results: all sug-
gest scale-dependent (or non-fractal) behavior, charac-
terized by an increase in D with increasing r. We attri-

bute this to the suppression of small-scale features, due
to the higher viscosities and yield strengths of silicic
flow. We suggest the margin appears 'linear' to a cer-
tain range of small rod lengths because the scale of fea-
tures they would otherwise detect are suppressed. This
explains a fractal dimension close to 1 for the shortest
range of rod lengths and, as expected, the correspond-

ing R 2 values are quite high. We interpret these results
to suggest that the shortest range of rod lengths (log r:
1.3-2.0 m) detects features in the flow margin that are
below the limit of self-similarity.

We now present the results of Method 2 applied to
basalts (i.e. those basalts which we measured using the
ranges of r shown in Table 7b). Fractal dimension and
the corresponding R 2 values show no systematic varia-

tion with range of rod length. The R z values are high,
generally exceeding 0.95. The parameter a can be posi-
tive or negative, is generally close to zero, and again
shows no systematic pattern among the various ranges.
These results for D, R 2 and a for basalts all suggest
fractal behavior.

We can use these fractal parameters to remotely dif-

ferentiate flow types. Basaltic a'a and basaltic ande-
sites can be distinguished primarily by their D values;
basaltic andesites generally have higher D (_>1.15)
than basaltic a'a (D: 1.05-1.09) and are less likely to
exhibit fractal behavior. Although dacites/rhyolites
and basalts have similar fractal dimensions (1.05-1.10)
for extensive ranges of logr, dacites and rhyolites dis-
tinctly show non-fractal behavior. Systematic evalua-
tion of D, R 2, and a at different range of rod lengths
(as done in Method 2) can be used to distinguish da-
cites and rhyolites from basalts remotely.

There may be a critical value of r, related to silica

content, which serves as a boundary for self-similar be-
havior (i.e. a value of r above which the flow appears
fractal). This critical value may be related to lobe di-
mensions and/or the degree of suppression of smaller-
scale features. Note that Fig. 11 shows a marked in-
crease in D for dacites after about logr of 2.5 m
(r =300 m). This may be related to the lobe width of

dacites, typically hundreds of meters. If so, we would
expect the apparent D of basaltic andesites to increase
at shorter rod lengths. This may be suggested by Fig.
11 but our database is too small to be conclusive. We

believe that a larger database of silicic flows would re-
veal a critical value of breakdown of fractal behavior
related to silica content. The fact that basaltic andesites

appear to have relatively constant fractal dimensions
up to logr=2 m while dacites/rhyolites appear to have
relatively constant fractal dimensions up to
log r = 2.5 m suggests an effect of yield strength which
is related to silica content. Our field observations

shows that fractal behavior for basalts also breaks

down, but at r< 10 cm.

The suppression of smaller-scale features in silicic
flows implies that nonlinear instabilities are also sup-
pressed inside the flows. Either the sluggish rheoiogy

prevents their formation, or it prevents their growth by
rapidly damping out feedback mechanisms. The gener-
ally non-fractal nature of the margins of silicic flows is
consistent with our simplified flow model (Fig. 8). Vis-
cosities of silicic flows are very large, > 106 for basaltic
andesites and > 10 _ for dacites and rhyolites, so q is
certainly ,_1. Thus, unless the flows have very large
initial pressures, it is likely that their behavior would
tend to be linear.

Conclusions

1. Basaltic lava .flows are fractals

Bruno et al. (1992) suggested that basaltic lava flows

are fractals, with pahoehoe flow margins having higher
fractal dimension (1.13-1.23) than a'a flow margins
(1.(15-1.09). This study, based on a larger database (45
flows) and over a wider range of scale (0.125 m-
2.4 km), confirms that earlier conclusion. Richardson
plots are consistently linear, characterized by high R 2
values. Furthermore, we have shown that basaltic lava

flows having transitional morphologies also exhibit
fractal behavior, and tend to have dimensions interme-

diate between a'a and pahoehoe. This indicates that
basaltic lavas, regardless of the emplacement mecha-
nism, exhibit self-similar behavior. We interpret this to
suggest that basalts are sufficiently fluid and lack a
sizeable yield strength, offering no obstacle to deter
the formation of small-scale self-similar features.

2. Silicic .flows are generally not fractals

Unlike basalts, silicic lava flows tend to exhibit scale-

dependent (non-fractal) behavior within the range of
scale studied (r: 10m-4.5 km). Typical Richardson
plots for basaltic andesites and (especially) the more
silicic dacites and rhyolites are non-linear. This break-
down of fractal behavior at increased silica content is

presumably related to the higher viscosities and yield
strengths, which suppress smaller-scale features.

3. Flow dynamics are nonlinear

Our observations that basaltic lava flows have fractal

outlines when they are internally controlled yet have
non-fractal outlines when they are controlled by gravi-
tational forces are consistent with our theoretical mod-

el. An assessment of flow dynamics suggests that nonli-
near processes operate for lava-flow emplacement on
relatively flat slopes. These nonlinear mechanisms are
damped out in silicic flows, leading to non-fractal mar-
gins, especially at small rod lengths.
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motely distinguish flow types. We suggest that tracta_w"_l_l_k, ford JD, Whalley WB (1989) Three implementa-

dimension (or local fractal dimension), correlation lions of fractal analysis of particle outlines. Comp & Geosci

coefficient, and quadratic coefficient can be used, in

combination, to attain this objective. We define 'local

fractal dimensions' for select ranges of log r, and find

that D tends to increase with increasing r after certain

critical rod lengths are exceeded. We can use local

fractal dimension to differentiate basaltic andesites

from dacites and rhyolites. Although basaltic a'a and
dacites have similar fractal dimensions over a wide

range of r, the parameters R 2 and a can be used to re-

motely differentiate between these flow types.
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Morphologic identification of Venusian lavas

Barbara C. Bruno I and G. Jeffrey Taylor

Planetary Geosciences, Hawaii Institute of Geophysics and Planetology, Honolulu, Hawaii

Abstract. Two independent methods are applied to Venusian
lavas. First, fractal properties of 30 lavas are used to identify

a'a, pahoehoe and transitional morphologies. Eighteen of

these flows are then categorized into these same morphologies

based on their radar signal. The techniques produce similar

identifications, lending confidence to the fractal identification

of those flow margins that could not be studied by the radar

technique. Three of these flow margins are of lavas in Mylitta

Fluctus, a flood basalt. Our fractal analysis suggests all 3 mar-

gins were emplaced as a'a flows, which has implications for

the emplacement of large lava plateaux in general.

Introduction

An abundance of evidence indicates that extraterrestrial

lavas are generally basaltic; if more silicic flows exist, they
are believed to be of limited areal extent (Basaltic Volcanism

Study Project, 1981). Specific to Venus, evidence for basaltic

composition comes from the Soviet Venera and Vega x-ray
fluorescence analyses (Barsukov et al., 1992). The general

consensus that Venusian lavas are basaltic has led to spec-

ulation on their emplacement. On Earth, high flow rates are

associated with channel-fed a'a lavas, whereas lower flow rates

tend to produce tube-fed pahoehoe lavas (Peterson and Tilling,

1980) and Venusian lavas would be expected to have similar
flow behavior (Head and Wilson, 1986). This work is aimed at

better understanding the emplacement of Venusian lavas by

identifying a'a and pahoehoe morphologies. Of particular
interest is the emplacement of long lavas and flood basalts.

Methodology

Fractal analysis

Our approach is to analyze selected lavas with two
independent remote sensing techniques. The first technique,

fractal analysis, is described in Bruno et al. (1992, 1994).

Briefly, we have found that flow margins of terrestrial basalts

are fractal over the range of scales studied (0.125m - 2.4km)

provided that they are internally-controlled (i.e., flow margins

are shaped by fluid dynamic processes, not by topography).
The different styles of emplacement of a'a and pahoehoe flows

lead to systematically different flow margin shapes, which can

be quantified by the fractal dimension (D). A'a flows generally

have lower D (D < 1.09) than pahoehoe flows (D > 1.13), and
transitional flows tend to have intermediate D.

Using the terrestrial analogy, we perform a fractal analysis
on selected Venusian lavas and categorize them into four flow

types. Flows that are fractal are interpreted to be internally-

tNow at: Department of Earth Sciences, The Open University,
Milton Keynes MK7 6AA, England (e-mail: B.C.Bruno@open.ac.uk).

Copyright 1995 by the American Geophysical Union.

Paper number 95GL01318
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controlled basalts. Based on D, these lavas are categorized

into a'a, pahoehoe, and transitional morphologies. Non-

fractal flows are interpreted to be different from internally-

controlled basalts. This category could comprise topograph-

ically-controlled basalts (e.g., basalts flowing in pre-existing

channels) as well as flows of more evolved compositions.

Radar analysis

Campbell and Campbell (1992) have developed a technique

that identifies flows based on their S-band (12.6cm) radar-

backscatter signal. A'a flows, having jagged, clinkery

surfaces, are systematically rougher than pahoehoe flows at

small (<10's cm) scales, and thus tend to produce a higher

backscatter signal at these short wavelengths. Thus, all other

factors being equal, a'a flows would appear brighter on radar-

backscatter (e.g., Magellan) images than pahoehoe flows.

This technique effectively discriminates between a'a and

pahoehoe only when the short-wavelength topography

dominates the radar-backscatter return; this occurs at incidence

angles (0) exceeding -30 ° (Campbell and Campbell, 1992).

At lower 0, the long-wavelength topography significantly

contributes to the backscatter signal and this technique cannot

be applied. Magellan's Cycle 1 left-looking coverage used

0>30* at latitudes between 54"N and 34"S; thus lavas located

within this band can be categorized as a'a, pahoehoe or

transitional. The signal levels corresponding to these flow

types vary with 0 and therefore latitude.

Comparison between radar and fractal techniques

Our approach is first to analyze only those flows which can

be studied by both techniques. We show the two methods

produce similar categorizations and thus independently

confirm each other. This suggests that the fractal technique is
valid and can be applied to identify those flows which cannot

be studied with the radar technique. Among those located

south of 34"S and hence not suitable for radar analysis are

three flow margins of lavas in Mylitta Fluctus, a flow field
identified as a flood basalt by Roberts et al. (1992).

Data and Results

We measured the fractal properties of 30 flow margins from

Magellan images (75-225m/pix). Flow margins were selected

using the criteria of Bruno et al. (1994) and measured using

equivalent rod lengths between 140m and 36kin. The range of

rod lengths used to measure a given margin depends on both
the flow margin length and the image scale. We note that

there is no gap in scale between the terrestrial and Venusian

measurements; in fact, there is more than an order of

magnitude overlap in rod lengths. Of these 30 flows, 21 fall

within the appropriate latitudinal range for radar analysis.
[The remaining 9 are located south of 34"S or north of 54"N.]

Of the 30 flow margins, most (27, or 90%) are fractal over

the range of scale measured. Based on the terrestrial analogy,

fractal behavior indicates basaltic composition and D can be

used to distinguish basaltic flow types (Bruno et al., 1994).
1897
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Table 1. Fractal and Radar Analyses of Venusian Flows

Flow Flow location (Magellan image) Fractal D R2 Fraetal Radax
number Scale 0tin) Interpretation Interpretation

VI. W. of Aplu'odite Terra (C100N043) 0.6 - 17.9 1.12 .99 trans phh/trans
V?_ E. of Aria Regio (C100N215) 3.6 - 35.7 1.15 .90 different
V3. E. of Aria Regio (C100N215) 2.3 - 28.3 1.09 .90 different
V4. E. of Aria Regio (C100N215) 0.5 - 22.5 1.14 .98 phh trans/phh
V5. N. of Phoebe Regio (C I00N283) 0.6- 7.1 1.06 .95 a'a a'a
V6, N. of Phoebe Regio (C 100N283) 0.6- 7.1 1.07 .90 different
V7. N. of Phoebe Regio (C 100N283) 0.6 - 9.0 1.06 .97 n'a a'a
VS. N. of Phoebe Regio (C 100N283) 0.6 - 9.0 1.10 .97 tram trans/phh
V9. N. of Phoebe Regio (C100N283) 0.4 - 10.0 1.09 .95 a'a a'a

VIO. N. of Phoebe Regio (C100N283) 0.5 - 14.0 1.09 .95 a'a a'a
V11. E. of Phoebe Regio (CIOON317) 0.6 - 17.9 1.13 .98 phh pith
VI2. N. of Sif Mons (F25N351) 0.3 - 11.1 1.21 .98 phh phh
VI3. N. of Sif Mons (F25N351) 0.3 - 5.6 1.15 .95 phh phh
Vi4. N. of Sif Mons (F25N351) 1.8 - 17.9 1.20 .96 phh phh
VIS. N. of Sif Mons (F'25N351) 1.4- 14.2 1.17 .96 phh phh
VI6. N. of Sif Mons (F25N351) 2.3 - 28.3 1.09 .97 a'a phh
VI7. N. of sir Mons (F25N351) 0.3 - 11.1 1.16 .96 phh phh
V 18. N. of Gula Mons (F25N357) 1.1 - 28.3 1.22 .96 phh phh
VI9. N. of Gula Mons (F25N357) 0.3 - 8.9 1.16 .98 phh phh
V20. N. of Gula Mons (F25N357) 1.8 - 35.7 1.24 .96 phh phh
V21. N. of Gula Mons (F25N357) O.I - 7.9 1.23 .99 plda phh
V22. N. Sedna Planitia (F55N346) 0.3 - 8.9 1.20 .96 phh
V23. Mylitta Fluctus (F55S355) 0.4 - 8.9 1.09 .99 a'a
V24. Mylitta Fluctus (F55S355) 0.3 - 11.2 1.09 .97 a'a
V25. Mylitta Fhictus (F55S355) 0.4 - 5.6 1.04 .98 a'a
V26. SE Lavinia Planitia (F50S356) 0.3 - 22.2 1.20 .98 phh
V27. SE Lavinia Planitia (F50S356) 0.3 - 7.0 1.21 .97 plda
V28. SE Lavinia Pianitia (F50S356) 0.3 - 8.9 1.13 .96 plda
V29. SE Lavinia Planitia (F5OS356) 0.3 - 11.1 1.18 .98 phh
V30. SE Lavinia Pianitia (F50S356) 0.3 - 11.1 1.18 .98 phh

Flows are inteq_reted as a'a Ca'a"), pahoehoe Cphh"), or transitional ("trans") basalts, or different from internally-controlled basalts
("different"). Scale refers to range of rod lengths used in conducting fraetal analysis. No radar analysis was performed on flows V22-30
due to their geographic locations, nor on flows V2, V3 and V6, as they are categorized as "different".

Assuming the terrestrial ranges of D also apply to Venusian

lavas, we make the following interpretations, as summarized

in Table 1:8 lavas are a'a (D: 1.04-1.09); 17 are pahoehoe (D:

1.13-1.24), and 2 are transitional (D: 1.10-1.12). The three

lavas found to be non-fractal are interpreted to be

topographically-controlled basalts.

Following Campbell and Campbell (1992), we examine the

radar-backscatter signal of the 18 lavas that are both fractal

and located between 54"N and 34"S. Based on the level of this

signal, we categorize these lavas into a'a (high), transitional

(intermediate), and pahoehoe (low) basalts (Fig. 1).

Table 1 compares the radar and fractal categorizations of

these 18 flows. Four are identified by both techniques as a'a

and 10 are identified by both techniques as pahoehoe. Three

flows are identified by the radar technique as having both

transitional and pahoehoe morphologies. The corresponding
D (1.10, 1.12, and 1.14) are in the transitional or low end of

the pahoehoe range. Only one flow (V16) shows an obvious

disagreement between the two techniques. This is excellent

evidence that Venusian basalts have the same ranges of D as

terrestrial basalts, suggesting we can use D to distinguish a'a,

pahoehoe and transitional flows on Venus.

Discussion

Radar and fractal techniques

Most (27 of 30) of the flow margins included in this analy-

sis are fractai, indicating a basaltic composition. The three

flows classified as different from internally-controlled basalts

could represent more evolved lavas, however we favor their in-

terpretation as topographically-controlled basalts.
The fractal dimensions of these lava flow margins indicate

both a'a and pahoehoe flows, as well as morphologies transi-

tional between these endmembers. With one exception, this

morphologic categorization based on fractal analysis is sim-

ilar to that based on the radar technique. The one exception is

interpreted as a'a by the fractal technique and pahoehoe by the

radar technique. In other words, the flow margin appears

relatively unconvoluted (a'a-like) yet the surface appears rela-

tively smooth at small scales (pahoehoe-like). This can be

explained as a flow emplaced as a'a and subsequently weathered

to form a smoother surface. Alternatively, there may be

several flows indistinguishable in the Magellan data. A
pahoehoe lava having flowed atop a pre-existing a'a lava

without obscuring the original flow margins could explain the

discrepancy between the two techniques. However, regardless

of the exact explanation for this one exception, clearly there

is an excellent agreement between the two techniques.

Pahoehoe formation favored on Venus?

We note that the majority of the Venusian flows measured in

this study have pahoehoe-like D (Table 1). Similarly, the

radar data of the areas studied by Campbell and Campbell

(1992) indicate generally smooth (pahoehoe-like) surfaces.

Among the explanations put forth by Campbell and Campbell

(1992) is that flows are emplaced as a'a but subsequently

weather to pahoehoe. This study disfavors that explanation,

as weathering of a'a flows would not be expected to create pa-
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Figure 1. Based on the 12.6cm radar backscatter signal,
flows are interpreted as a'a (shown in red), transitional (yel-

low) and pahoehoe (greyscale). Color bar shows roughness

increasing toward the right. Arrows denote flow margins

measured with fractal technique; numbers correspond to Table

I. (a) Magellan image C100N283 (resolution 225m/pix). V9
is interpreted as a'a. (b) Magellan image F25N351 (resolution
75m/pix). V12, V14 and V15 are all interpreted as pahoehoe.

hoehoe-like flow margins. Instead, our results suggest flows

are emplaced as pahoehoe, likely reflecting modest flow rates.

A priori, it's theoretically difficult to explain why pahoe-

hoe formation would be favored on Venus. In fact, we are not

convinced that pahoehoe formation is indeed favored on

Venus; this relatively small dataset may well not be represen-

tative of the global population of Venusian lavas. However, ff

more detailed studies using larger databases show that pahoe-
hoe flows are common on Venus -- or on certain volcanoes on

Venus -- this has important implications for the sub-volcanic

plumbing systems. As summarized by Wilson and Head

(1981) and Rowland (1987), an eruption will continue only if

magma pressure is sufficient to maintain eruptive conduits,

and magma flux is sufficient to replenish heat lost through the

cooling of country rocks. Otherwise, the conduit closes

and/or the dike freezes, and the eruption stops. The low

magma pressures associated with eruptions of pahoehoe lava

are insufficient to keep eruptive conduits open; the presence of

pahoehoe lavas indicates a pre-established connection be-

tween the magma chamber and the planetary surface. Perhaps,

the higher shallow crustal temperatures on Venus retard magma

Figure 2. Magellan image F55S355 (resolution 75m/pix)

showing long lavas of Mylitta Fluetus flow field.

freezing, thereby keeping dikes fluid longer and allowing
them to become mechanically-stable conduits. If the dikes

remain fluid for long after the eruption stops, they can be later

re-used by subsequent low-magma-flux eruptions.

Long lava flows

As part of this fractal analysis, we studied three flow mar-

gins of lavas in Mylitta Fluctus (Fig. 2). In terms of area,

volume and thickness, Mylitta Fiuctus is comparable to the

Columbia River flood basalt province (Table 2). The three

measured margins, all found to have a'a-like D, have lengths of

~100-200km, fairly uniform widths of-20-30km and

estimated thicknesses of -10-3Ore (Roberts et al., 1992).

There has been much debate on the emplacement of long

lavas. Based on terrestrial data, Walker (1973) has argued that

long flows are emplaced at high effusion rates. However,

Malin's (1980) study of Hawaiian lavas revealed a poor
correlation between effusion rate and flow length. Pinkerton
and Wilson (1988, 1992) examined the lava flows included in

the two datasets and found that Walker's relationship describes
cooling-limited channel-fed flows (i.e., Walker's dataset)-- not
volume-limited or tube-fed flows. Pinkerton and Wilson's

(1992) reanalysis of Malin's data revealed that flows shorter

than predicted by Walker's relationship were immature

volume-limited flows, whereas flows longer than predicted

were tube-fed. As lava tubes significantly inhibit radiative
heat losses from the flow surface, flows can travel much

greater distances before cooling.

Table 2. Comparison of Flood Basalt Provinces

Flow Field Area Volume Thickness
(References) (kin 3) Oom3) (m)

Columbia River (Tolan et al., 1989; Reidel et el., 1989)
Entire Flow Field 1-2 x 105 1-2 x 105 103
Individual Flows 1-2 x 105 102- 103 -3 - >100

Mylitta Fiuctus (Roberts et el., 1992)
Entire Flow Field 3 x 10" 2 x 104 250 - 400 (?)
Individual Flows <1 x 10 s <:2 x 104 10 - 30 (7)
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radar technique. Such flow type identification can lead to a

better understanding of planetary eruption rates and eruption

styles. Our fractal analysis of Mylitta Fluctus suggests that

this flood basalt province has been emplaced as a'a flows.
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Modeling gravity-driven flows on an inclined plane
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Abstract. We develop an exact analytic solution for unconfined flows having an assumed
rheology advancing on an inclined plane. We consider the time-dependent flow movement to be
driven by gravitational transport and hydrostatic l_..ssure. We examine how these two forces drive

flow movement in the downstream and cross-stream directions by adopting a volume conservation
approach. Simplifying assumptions reduce the governing equation to the dimensionless form

_l_x( ixh m) = _l_Y( ixhmOhl_y), where x and y are the downstream and cross-stream directions,

respectively; h is the flow depth; and Ix = Ix(x) and m are prescribed by the rheology of the fluid.

We solve this equation analytically for flows of arbitrary m and Ix using a similarity

transformation. This method involves transforming variables and reducing the governing equation
to a nonlinear ordinary differential equation. Our solution determines how flow depth and width
change with distance from the source of the flow for different Ix and m based on known or assumed

initial parameters. Consequently, from the traditional geometric dimensions of the deposits, these

rheological parameters can he inferred. We have appfied the model to basaltic lava flows and found
m values typically between 1 and 2. This contrasts with Newtonian fluids, for which m=3, The

model of Ix(x) corresponding to constant viscosity approximates the field data of pahoehoe toes

(<5 meters in length), whereas models of Ix(x) corresponding to linearly increasing and

exponentially increasing viscosities better approximate the remote sensing data of longer flows
(several kilometers in length).

Introduction

Bruno et al. [1992, 1994] developed a technique to glean

information regarding flow emplacement and rheology from

the fractal properties of lava flow margins. We found that

as frozen snapshots of the final moments of flow, plan view

shapes hold important information regarding lava flow

dynamics and rheology. In this work, we again exploit the
final shape of a lava flow as a source of rheological
information, using an altogether different method. We

model downstream changes in flow depth and width for

flows of different rheologicai characteristics, and then apply
this model "backward" to infer or constrain these

rheolugicai characteristics given depth and width profiles.
We note that this model can also be applied to other types
of unconfined geologic deposits, such as volcanic lahars and
mud flows.

A critical assumption of the formulation of the problem
is that the volumetric flow rate in the downstream direction

represents a conserved quantity. The conservation of

volume for an unconfined flow of depth h = h(x, y, t) on an

inclined plane is described by

Copyright 1996 by the American Geophysical Union.

Paper number 96JB00178.
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wh_e

(la)

(lb)

and where t is time; q is the volumetric flow rate per unit
width; and x and y are the spatial coordinates in the

downstream and cross-stream directions, respectively. (All
mathematical symbols are summarized in the notation

section.) Equation (la) is a form of the first-order

conservation equation relating flow of a given variable (i.e.,

h) to its time rate of change. Solutions to these equations

are called kinematic waves [e.g., Li&hthill and Whitham,

1955; Baloga, 1987]. Applying kinematic wave theory to

volcanic lahars and considering only the downstream (x)

direction, Weir [1982] considered solutions to (la) of the
form

q = bf(O)h m (2)

where b and m are constants and .f(0) is some function of

surface slope. As noted by Weir [1982], many different
types of transport processes have been modeled with a flow

rate of the form shown in (2) featuring a power law

relationship between flow rate (q) and flow depth (h), a

spatially dependent prefactor _ (which in (2) depends on a

11,565
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constant b and the surface slope 0)and a positive constant

m. The empirically determined m values of 3/2 and 5/3 give

the Chezy and Manning laws, respectively, for rivers with 13

dependent on the square root of the slope. The Shamov law

is given by m=7/6 with 13independent of slope, whereas the

Sribniy law is given by m=5/3 with 13 dependent on the

fourth root of slope. Both the Shamov and Sribniy laws

have been used to describe transport of mud flows [Gel'din

and Lyubashevskiy, 1966]. In quantifying the risk from

volcanic lahars, Weir [1982] obtained m values in the range

1.2-2.0 with a [_ dependence on the underlying slope similar

to that of empirical river laws. Other diverse applications

based on a flow rate of the form of (2) include rainfall runoff

[Sherman, 1978], channel flow with infiltration [Sherman,

1981], laminar flow of glaciers [Paterson, 1969, chapter 6],

surface irrigation [Sherman and Singh, 1978], and dam

bursting [Hunt, 1982]; see Weir [1982, 1983] for a

thorough review of the literature. The classic treatment of

such flow rate forms derives from the problem of river

flooding [Lighthill and Whitham, 1955] with other notable

early papers addressing the response of glaciers to various

environmental factors [e.g., Nye, 1960, 1963].

In this work, we explore the relevance of a flow rate of

the form of (2) in describing transport of lava flows of

arbitrary rheology. Our approach is to generalize the

volumetric flow rate per unit width of Newtonian fluids

given by

Cl= - g---c°sOh3Vh + g-'-sin0h3i
3v 3v (3)

to include Weir's [1982] relation (equation (2)). Thus we

adopt the generalized flow rate

_1= -ag c°sOhm _Th+ o_gsinOh mi (4)

where ¢x=_t(x) and m, a positive constant, are prescribed by

the rheology of the fluid. Our approach is to solve the

volume conservation equation (equation (la)) using the flow

rate given in (4) and to compare the theoretical solution
with data. If the solution describes the data, we shall

conclude the assumed flow rate is a reasonable model for

lava flows; otherwise, we will conclude that the assumed

flow rate is not appropriate. We note that (4) does not
account for instabilities (e.g., due to surface tension); the

possible development of instabilities in viscous fluids has
been addressed in the literature [Huppert, 1982a, b; Lister,

19921.

Equation (4) incorporates Weir's [1982] power law

dependence on flow depth and an arbitrary spatially

dependent change in the rheological parameter oz. We note

that this assumed power law relationship is unrelated to the

power law relationship between shear stress and strain rate

(i.e., "power law theology") that characterizes certain fluids.

Like (2), equation (4) expresses the influence of gravity in
the downstream (x) direction and the influence of hydrostatic

pressure according to the gradient of the depth of the flow.
For Newtonian fluids of constant viscosity (m=3 and

vt=l/3v, where v is kinematic viscosity), equation (4)

reduces to (2). Smith [1973] found an analytical solution

for this special case [see also Lister, 1992]. For non-

Newtonian flows, the parameter m may be greater or less
than 3 and can be empirically determined by comparing our

solution to (4) with flow shape. If, for example, the

associated flow depth for a non-Newtonian fluid is less than

the Newtonian equivalent for a given flow rate, then it

follows that m > 3.
For flows of nonconstant viscosity, the parameter ct is

free to vary spatially. However, this spatial dependence is

permitted only in the downstream direction; any cross-
stream variations in viscosity are assumed to be small in

comparison with changes in the downstream direction. Like

m, ct(0) is a positive constant.

Smith [1973] showed that substituting the flow rate for a

Newtonian fluid (equation (2)) into the volume conservation

law (equation (la)) generates a differential equation having

the form of the nonlinear diffusion equation under certain

restrictions and simplifications with free boundaries on the

surface of the flow. Obtaining this differential equation

requires that gravity is the predominant influence on the

downstream motion (i.e., the influence of the hydrostatic

pressure gradient in the downstream direction is relatively

small), while the concomitant lateral expansion of the flow

is due solely to hydrostatic pressure. In the steady state,

Smith [1973] found a remarkable similarity solution that

matches the free-boundary condition for the lateral

expansion of the flow as a function of distance from the

source.
In this paper, we generalize the volumetric flow rate used

by Smith [1973] to embrace Weir's [1982] relation and an

arbitrary spatially dependent change in the flow viscosity.
To solve the resulting nonlinear diffusion equation for

volume conservation, we show that there exists a

transformation of the differential equation into the original

Smith [1973] form and obtain corresponding solutions for

different types of rheologies. As required by the case of a
Newtonian fluid of constant viscosity [Smith, 1973], the

generalized case requires both that gravity is the

predominant influence on the downstream motion and the

accompanying widening of the flow downstream is due

solely to hydrostatic pressure.

Steady State Similarity Solution

The solution described in this section applies to the

steady state, i.e.,

_ =0. (5)

The steady state (or time-independent) solution is

presumably the asymptotic form of physically reasonable

time-dependent solutions. At the source of the flow, we

have the boundary conditions

h (x= O,y = O) = h0 (6a)

h (x = 0, y = i-w0) = 0 (6b)

where h o and w o are prescribed positive constants which

represent the depth and half width of the flow, respectively,
at the source. Because the flow margin is a free boundary

and can expand according to the local dynamics, we must

also find the function w=w(x,t) such that for all t > 0,

h (x, y = i-w) = 0 (6c)

that is, the flow has a finite width. We do not require that a

comparable boundary condition be satisfied in the
downstream direction, thus allowing the flow to have

infinite length.
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Toobtainanexactanalytic solution in the steady state,

we convert the steady state partial differential equation and

supplementary conditions to dimensionless form using the
following substitutions:

h = hoh* (7a)

x = Lx*
(7b)

Y = waY* (7c)

w = WoW* (7d)

ot = SOOt* (7e)

where asterisked parameters are dimensionless and the

downstream length scale (L) is yet to be determined. Unlike

the other sealing factors (ho, w o and _0), the parameter L

does not represent a condition at the source nor is it

constrained by flow dimensions; it is a free parameter.

Combining (4), (5), and (7) results in the dimensionless
partial differential equation

. .m _h* w 2 _ .

-(sinOwo 2] _ { . *m'_

-t j t h )

or, dropping asterisks to simplify

remembering all terms are dimensionless),

(8a)

notation (but

c )

(Sb)

The corresponding dimensionless form of the supplementary
conditions is given by

h(x=O,y=0)= 1 (9a)

h (x = 0, y = :1:1) = 0 (9b)

h (x, y = i-w(x) ) = 0 (9c)

Oh/'dy (x, y = 0) = 0 (9d)

w(0) = 1 (9e)

c_(0) = 1. (9f)

In the interest of simplifying (gb), we define the length
scale

w 2
L= "O tanO.

ho
(lOa)

Furthermore, we require that the influence of the hydrostatic

pressure in the downstream direction is small compared to
the direct gravitational transport of fluid elements and the

cross-stream influence of hydrostatic pressure such that

(10b)
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and can therefore be disregarded. The partial differential
equation (Sb) can then be written in the form

(11)
When the geometric considerations for a flow indicate that

(10b) is satisfied, solutions to (11) describe how flow depth
changes, both downstream and laterally. We will then be

able to solve for the unknown function w=w(x), which
describes how flow width changes downstream.

Smith [1973] solved (I1) analytically for a Newtonian

fluid (i.e., m=3 and _(x)=l/3v, where v is kinematic

viscosity) with a constant viscosity using the method of

similarity transformation. Our approach requires

transformation of (11) to the form obtained by Smith, but

our subsequent analysis highlights some important
differences for the dynamics of the problem.

We begin our approach by transforming away the

dependence on the arbitrary function _(x) in the governing

(11). This function characterizes the spatially dependent

resistance to flow caused by viscosity, surface friction, and

any other forces. Here, we rid our equation of ct(x), leaving

a transformed equation that can be more readily solved by

similarity methods, even though the arbitrary function

remains embedded in the dependent and independent

variables. Instead of a differential equation for h, we

transform the partial differential equation to one that applies
to a related variable _ defined by

h(x, y) = Ot(x)-lkn _(x, y). (12)

Instead of the independent variable x, we use a related
variable z:

=r dx'

z ".
With these new variables, (11) becomes

(13)

_Zt 1= _'t" _')" (14a)

Explicitly differentiating (14a) yields the equivalent
expression

(14b)

Equation (14b) is a partial differential equation with one

dependent variable (_) and two independent variables (Y,Z).
It is a transformed version of (11) which also has one

dependent variable (h) and two independent variables (x,y).
We now apply a similarity construct for the purpose of

transforming (14b) into an ordinary differential equation

with one dependent variable (G) and one independent

variable 0q). Following Smith [1973], we introduce the
similarity construct

_(_,Z) = (l + az)rG(_) (15)

with

=y(1 + az)q (16)

where a, _ and q are positive constan_ to be determined.
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This construct will constitute a similarity solution

provided (1) the constants a, r, and q can be determined; (2)
the partial differential equation (14b) reduces to an ordinary
differential equation; and (3) the resulting ordinary

differential equation has a solution that satisfies boundary

conditions corresponding to those appearing in (9).
With the transformations shown in (15) and (16), the

supplementary conditions shown in (9) translate to

G(0) = I

BRUNO ET AL.: MODELING GRAVITY-DRIVEN FLOWS ON AN INCLINED PLANE

(17a)

(17b)

(17c)

G'(0) = 0

G(+I) = o

The reader may check, by explicitly differentiating (15),

that

= _(I+=z)'-_[_+q_G'] (18a)
&

_.._.= (l + az)r+e G' (18b)
_Y

d_= (1+ az)"+2qG". (1gc)
3y

Substituting the expressions of (18) into (14b) yields

GG" ,2

a(l+az)r-'[rG+qllG'l=(l+az)2r+2'I_+G I" (19)

Note that the factor (l+az) appears on each side of (19) with

different exponents. By definition, similarity

transformations are absolutely invariant; they necessarily

preserve power relationships. Thus the constants r and q

are required to satisfy

2r+2q=r- 1. (20)

The governing equation becomes

and we look for a solution of the form

G = cl + c2_i +c_ 2 (22)

noting that there may be other solutions to (21) that are not
of the form of (22). From the boundary conditions listed in

(17), the solution to (22) is determined to be

G = 1- _2. (23)

The reader may check that the solution shown in (23)

also satisfies (17b), as required. Substituting (23) into (21),

-'2(1.TI2)+ 41_2--a(r+ l]2X-r-2q) = 0 (24a)
m

construct and can be related explicitly to m, the only

parameter of the transformed differential equation (11). By
equating coefficients of powers of _ in (24b), we obtain two
conditions for the constants r and a, required for a solution

of the governing equation (21):

Equating coefficients of _2

7"+4 - a = 0.
m (25a)

Equating coefficients of .q0

-2 ar = O.
m (25b)

With (20), we have three equations for three unknowns (a, r,

q). The result is

a = 2(1 + 2m)lm (26a)

r = -1/(1 + 2m) (26b)

q = -m I(1 + 2m). (26c)

This completes the solution of the problem in the sense

that all constants required by the similarity construct are

given in terms of the parameter m, and once some form of
vt(x) has been chosen, (13), (15), (16), and (23) can be used
to relate the integral in (12) back to the h variable. The

solution is

= +"J0 L1-yL1+°jo 1(2')

where a, r, and q are given in terms of m in (26) and o_=ct(x)

is arbitrary. We note that for Newtonian fluids (m=3), our

solution reduces to Smith's [1973] solution, with a=14/3,

r=-l/7 and q=-3/7.
Recall that the variables in (27) are dimensionless; they

were nondimensionalized according to the transformations

of (7). Here, we undo those transformations, arriving at

act 1/m , _ 1-_ 1 +
1 ,L/1, dx' _rF y2 ( l/m+ o J; wool Jo I

(28)

The explicit form of w(x) naturally follows from (6c) and

(28). At the flow margin (i.e., y=+w),

y2 I -- t'mfX/L dx'_2g=01- W 1 + '_0 J0 ¢Zl/mJ (29a)

therefore

I _ 11mfX[L,d.x' "_-qw = w o 1 + _o _o e_l/,n J " (29b)

and, from (20),

--2 (1.112)+ 4112 _dr+l]2]= 0. (24b)
m

We now wish to solve for the three unknown constants

(a, r, q). All three constants appear in the similarity

Effect of Rheology on the Steady State

Similarity Solution

The steady state similarity solution h(x,y) (equation (28))

has a theological dependence; both _(x) and m are prescribed
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by the rheology of the fluid. We note, with the conditions

given in (6), that regardless of the values of ¢X(x) and m,(28) reduces to

hC0,y)=
(30)

The similarity method produces a physically realistic

boundary condition: equation (30) indicates a parabolic

cross section at the vent. The downstream evolution of this

parabolic form, however, varies with the rheological
characteristics. Here, we show the effect of various values

of _(x) and m on the form of h(x,y) both in cross-sectional

and longitudinal profiles. In the following section, we

compare the resulting profiles with data obtained from field
and photographic measurements.

Models for ca(x)

During surface flow, a lava (or other geologic material)

often experiences a change in resistance to flow. This could

be due to changes in the fluid's properties (e.g.,

downstream increase in viscosity in a lava due to cooling aor

crystallization) and/or changes in the underlying
topography (e.g., changes in the slope or roughness of the

underlying flow bed). Determining the nature of these

processes and their effect on ca(x) requires either empirical
data from specific applications or an independent physical

law, such as a cooling-induced viscosity or crystallinity
change. In the absence of such information, we consider

three end-member models to approximate the form of
changes in ca(x) with distance from the source of the flow.

These choices of ¢_(x) are arbitrary, but based on our

knowledge that at least for Newtonian flows, ¢_(x)is

inversely related to viscosity. Here, we assume that a(x) is
inversely related to viscosity in the general, non-Newtonian

case and construct three models for ¢x(x) correspond to

constant, linearly increasing and exponentially increasingviscosity:

Constant
U(X) = ff'O
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Effect of Rheology on the Solution

In this section we substitute the expressions for ca(x)

given in (31) into our solution for flow depth (equation

(28)) and half width (equation (29b)) along with selected m

values to determine the dependence of our solution on these

rheological Parameters. We note that the purpose of these

calculations is to examine flow behavior for various flow

regimes and not to model a realistic flow. Also required by
these equations are flow depth and half width at the source

(ho and Wo) and surface slope 0. Arbitrarily chosen sample

values used in this analysis are given here: w0_-10 m, ho=l
m and 0=5.7 o. Substituting these Parameters into (28) and

(29b) allows us to construct depth and width profiles,
respectively, for choices of ca(x) and m and thus to determine

the effect of these rheological Parameters on our solution.
Longitudinal depth and width profiles are shown for selected
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Linear

a(x)=ao/(1+x� G,)

Exponential
ca(x)=%e-"/Lo

where a0fa(O) and L a is a constant scale factor. For

laminar flow of Newtonian fluids, ca0= 1/3v0, where v o is the
viscosity at the source of the flow. Equation (31a) precludes

any downstream changes in viscosity, thUS requiring o_ to

remain constant. Equations (31b) and (31c) allow for

downstream viscosity changes. In formulating these two
equations, we assumed viscosity increases downstream.

many geological materials (including si/icate lava flows),
this is consistent with observations that cooling and

crystallization induce viscosity increases. However, this is

not always the case; some materials (e.g., su/fur) show a

decrease in viscosity during cooling in certain temperature

ranges, and the reader is hereby cautioned. The rate at

which viscosity increases (and ca(x) decreases) in (31b) and

(31c) is related to some scale factor La, which is generally

controlled by physical processes (e.g., crystallization) and

may be unrelated to the length scale L defined in (7b).

(31b) =

(31c)

ade._

x tc 100 -- /x C C Ofor

two

For 0 . ' ) ' ' , I , , , ]

0 200 400 600 800 1000 1200

Distance from Source (x, meters)

Figure 1. Theoretical longitudinal profiles of (a)
centerline flow depth and (b) flow half width as a function

of distance from source, based on constant viscosity and
assumed initial parameters. These profiles correspond to

m=0.5, m=l, and m=lO. All flows (regardless of m values)
widen downstream, accompanied by modest thinning.
Higher m values correspond to wider, thicker flows havinghigher aspect ratios.
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m values (0.5, 1, and 10) for constant (Figure 1), linearly

increasing (Figure 2) and exponentially increasing viscosity

(Figure 3).
For constant a, all flows (regardless of m values) widen

downstream (Figure 1). Flow depth remains relatively

constant, showing a slight downstream thinning. Higher m

values correlate with wider, thicker flows of higher aspect

ratios (h/w). Near the source, the flow has the highest

aspect ratio; cross-sectional profiles become progressively

thinner and wider downstream. All flows show convex

longitudinal depth (h versus x) profiles (Figure la) and
concave longitudinal width (w versus x) profiles (Figure lb).
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i ure 2. Theoretical longitudinal profiles of (a)
F g ....... t. ""d Ib_ flow half width as a function
centernne tlow o©pm °,, " " linearly increasing
of distance from source, based on
viscosity and assumed initial parameters including L_t=10

(100-fold viscosity increase)• These profiles correspond to
m=0.5, re=l, and m=10. All flows (regardless of m values)
thicken and widen downstream. Lower m values generally
correlate with wider, thicker flows having higher aspect

ratios.

profiles are concave• Compared with the case of constant

or, these flows are wider and thicker, with the differences
becoming more pronounced downstream, that is, as the

differences in (x(x) become more significant.

There is a strong dependence on the choice of scaling

factor L_t. For sufficiently large values of L¢, downstream
increases in (x(x) are negligible, approximating constant

viscosity. Thus the flow would exhibit a near-constant,

slowly decreasing depth in a convex longitudinal depth
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profile. Choosing sufficiently small La, the downstream

longitudinal profile would show continuous thickening,

most noticeably for low m values. Figure 2 is based on

La=10 in (31b), which corresponds to a downstream

viscosity increase of lO0-fold over the first kilometer. This

downstream viscosity increase is realistic for basaltic lavas,
as discussed below.

For exponential a (i.e., exponentially increasing

viscosity), flows tend to thicken and widen downstream.

Like Figure 2, Figure 3 corresponds to a viscosity increase

of 2 orders of magnitude over the first kilometer. This

corresponds to La=215 in (31c). Flow depth (Figure 3a) and

width (Figure 3b) each increase exponentially downstream.

Longitudinal depth profiles are convex, whereas the width

profiles may show a change in concavity from concave near

the source to convex farther downstream. Flows

characterized by low m values show only modest widening

and thickening near the source; however, farther

downstream, these flows eventually become thicker and

wider than those characterized by higher m values. Again,

there is a strong dependence on the choice of L a. Choosing

a smaller value for L a would result in significantly wider and
thicker longitudinal profiles.

Our model predicts that flows characterized by downstream

viscosity increases (either linear or exponential) are

typically thicker and wider than those flows that show no

such viscosity increases (Figures 1-3). This is reasonable,

consistent with observations that lava flows tend to "pile

up" as they cool. Both the linear and exponential viscosity

models predict downstream widening and thickening. Since

the model assumes volume conservation, such concomitant

widening and thickening necessarily implies a decrease in
flow rate.
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Data

The database for this analysis consists of eight basaltic

lava flows (or segments thereof). Each flow included in this

study is an individual flow unit, as compound flows or flow

fields are not described by our model. In choosing suitable

candidates for measurement, we used the following criteria:

(1) unconfined, gravity-driven flow; (2) continuous, well-

preserved and unobscured flow margin; (3) constant surface

slope; and (4) relatively smooth substrate such that any
irregularities in the substrate do not significantly affect flow

behavior. Five of the eight lava flows analyzed are
tholeiite basalts on Kilauea volcano that were observed

directly in the field. These flows are individual pahoehoe

toes, with lengths ranging from 0.6 to 5 m from the point

of breakout. Three of these pahoehoe toes have ropy

morphology; the remaining two are smooth-surfaced. We

measured flow width as a function of distance from the

source. For two ropy pahoehoe flows, we also constructed

an additional longitudinal width profile: we measured the

end-to-end widths of the ropes at various downstream

locations. No such measurement could be made on the third

ropy toe, as it had a double-rope morphology.

We also constructed longitudinal profiles of flow width of

three basaltic lavas from remote sensing images: La Porufia

(Andes, Chile), Marcath flow (Lunar Crater, United States)

and SP flow (San Francisco Volcanic Field, United States);

see Figure 4. Each of these lavas met the suitability criteria
outlined above. These flows range in composition from

alkali basalt to basaltic andesite and are several kilometers

in length [Schaber et al., 1980; Lum eta/., 1989, Francis,
1993].

Comparison of Data and Theory

By comparing the theoretical profiles predicted by the
model with known flow dimensions, we can work

"backward" to infer the rheology of geologic deposits. This

can be a valuable method of studying lavas whose flow has

not been recorded, including prehistoric flows and flows in

remote areas on Earth or other planets. However, we note

that this model is simplified and must be applied with
caution. One key assumption is flow must be unconfined.

Once a channel and/or levees have been formed, flow

becomes confined and tends to maintain an equilibrium

width. Furthermore, the underlying topography is assumed

to be smooth and characterized by constant slope. It is
essential that this condition be satisfied because a lava of

constant viscosity flowing on irregular topography may
form a deposit having dimensions similar to that of a lava

flowing on a smooth surface that cools during flow.

Finally, our model assumes downstream flow is driven by

gravitational transport, as opposed to being driven by

hydrostatic pressure. If these assumptions are satisfied by a
given flow, matching the flow's geometric dimensions to

those predicted by the model can be used to infer or

constrain the governing rheology (i.e., the rheological

parameters ¢t=ct(x)and m). A quantitative comparison
between such theoretical and actual profiles is the focus of

this section. However, this comparison is restricted to

width profiles: without a priori knowledge of preexisting

topography, centerline depth profiles cannot be accurately
constructed.

Methodology

In this paper, we compare the model's theoretical profiles

of flow width against measurements obtained from our field

and photographic studies. To generate these profiles, the

model requires a variety of input parameters. Some of these

parameters (i.e., h 0 and 0) are easily measured; others (i.e.,

m and a) are unknown and must be deduced. Recall that m is

characteristic of the fluid so its value remains constant

during flow (e.g., Newtonian fluids have m=3), whereas the

parameter 0_ records changes in viscosity during flow. Our
model assumes any cross-stream variations in a are

negligible, that is, ct=ct(x). We consider three end-member

approximations for a(x), all based on the assumption that a

is inversely related to viscosity. These three models for

ct(x), corresponding to constant, linearly increasing, and

exponentially increasing viscosity, are given in (31). Note
that our solution for flow depth (equation (28)) and half

width (equation (29b)) is not sensitive to absolute values of

ct0, only to the ratio of Cto/Ot(x). Thus ct0 is a free parameter

which we define as _0=1. In all cases, we assume a point
source (i.e., Wo= 1).

Our approach is to first consider only the field data.

These flows are sufficiently short (< 5 m) such that

viscosity (and thus a) is assumed constant. Thus the only

unknown input parameter is m, which can be deduced by a
best fit of the model to the data. We assume this value of m
to be characteristic of all basaltic lavas.

We then consider the remote sensing data. Over the

length of these flows (2-.8 kin), significant cooling and/or

crystallization may have occurred, resulting in a downstream
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Figure 4a. Image of SP flow, located in the San
Francisco Volcanic Field, United States. The flows in

Figures 4a-4c are all basaltic and were selected according to

the criteria described in the text.

Figure 4b. Image of Marcath flow, Lunar Crater, United

States.

Figure 4c. Image of La Porufia flow, located in the Andes Mountains in northern Chile.
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viscosity increase. Thus we cannot assume constant ct.

However, using the m value obtained from the field data

above, the form of a(x) can be inferred for each flow by
fitting the model to these data. By computing the

corresponding predicted viscosity increase, the model can be
tested for reasonableness.

Results: Field Data

In accordance with the above described methodology, we

begin our analysis by comparing the field data with the
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theoretical output of our fluid dynamic model assuming

constant viscosity. For the majority of the field data, the

best fit of the model is obtained using m values of 1-2

(Figure 5). (We note, however, the data do not all appear

concave as predicted by the constant-viscosity model.) We
assume this value of m to be characteristic of all basaltic
lavas.

As Newtonian fluids are characterized by m=3, our

analysis suggests most basaltic flows are non-Newtonian.

2

¢d

e-

l

2.o 

. 1.0 +

0.0

0 1 2 3
x, in meters

e

0 I , f i I i I

0 1 2 3 4 5
x, in meters

Figure 5. Longitudinal profiles of flow half width as a
function of distance from source. Each plot shows a
comparison between the model's predicted profile based on

constant viscosity (solid lines) and the measured profile

based on field data (pluses). The calculated profiles
correspond to m=0.5 (bottom curve), m=l (bottom middle

curve), m=2 (top middle curve), and m=3 (top curve). The
majority of the data (i.e., Figures 5a, 5c, and 5d) is best

approximated by the theoretical profiles corresponding to
re=l-2. Note that the data in Figure 5b fail below the m=l

curve, while the data in Figure 5e are best approximated bym=3.
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Equation (4) predicts these basaltic flows, with their lower m
values, to be thicker than Newtonian flows emplaced at the

same flow rate. This is in agreement with a wide variety of

field and laboratory measurements of basaltic lavas which
indicate the presence of a yield strength [e.g., Shaw et aI.,

1968; Shaw, 1969; Pinkcrlon and Sparks, 1978]. This non-
Newtonian rheology has been attributed to dispersed crystals

and gas bubbles contained in the lava and possibly to the

development of molecular structural units at subliquidus

temperatures (as summarized by Cas and Wright [1987,

section 2.4]).
As discussed above, we also measured the widths of

surface ropes as a function of downstream location of two

pahoehoe flows. (Rope width is defined as the linear
distance between the endpoints of each rope.) These data
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Figure 6. Longitudinal profiles of rope half width as a
function of distance from source. Each plot shows a

comparison between the model's predicted profile based on
constant viscosity (solid lines) and the measured profile
based on field data (pluses). The calculated profiles

correspond to m--0.5 (bottom curve), m=l (bottom middle
curve), m=2 (top middle curve), and m=3 (top curve). These

data are best approximated by the theoretical profiles

corresponding to m=0.5-1.

are shown along with the model's predicted longitudinal

width profiles for various m (Figure 6). For both flows, the

model approximates the data for 1/2 < m < 1. Recall that

our model assumes unconfined flow. We conducted these

rope width measurements because we were interested in

seeing how our model would fit data of confined flow. Like
the flow itself, the ropes widen downstream. However, the

downstream widening of the ropes is hampered by the

confining effect of the previously established flow margins.

Thus we might expect the ropes to experience less net

widening compared to the total flow, corresponding to a

smaller rn value. This is precisely what Figure 6 shows.

Results: Remote Sensing Data

Using m values of I and 2, we run the model for

parameters corresponding to the remote sensing data, based
on the assumption of constant viscosity. Figure 7 shows
the resulting longitudinal width profiles. For all flows, the

data are inconsistent with the model's predictions. The

measured widths generally exceed those predicted by the

model, and these differences become more pronounced

downstream. This results in a steeper longitudinal width

profile than that predicted by the model. The inconsistency
between these data and the model's predictions suggests that

basaltic flows of these lengths are generally characterized

by a downstream viscosity increase.
Using the same m values and initial parameters, we rerun

the model based on the assumption of nonconstant

viscosity. Figures 8 and 9 show longitudinal width profiles
for linearly and exponentially increasing viscosities, based

on (31b) and (31c), respectively. In these equations, the

parameter Let quantifies the downstream viscosity increase.
In the absence of actual data or an empirical law, a value of

Lct must be assumed. Choosing L_x sufficiently large has the
effect of reducing (31b) and (31c) to (31a), the case of'

constant viscosity. In this work, our method is to first

chose a value of Let empirically to approximate the data and

then to test this value for reasonableness by calculating the

corresponding change in viscosity. This approach results

in choices of Let=50 (Figure 8) and La=500 (Figure 9).

Compared to the constant viscosity model, the linear

viscosity model more closely approximates the data for all

three flows (Figure 8). For two of these flows (Lunar Crater

and SP), the exponential viscosity model also produces a

good fit to the data (see Figures 9a and 9b). The
downstream viscosity increases corresponding to the model

predictions shown in Figures 8 and 9 are 2 and 3-4 orders of

magnitude, respectively, over a distance of 4 kin. These

downstream viscosity increases are comparable to those

documented for basaltic flows; see Crisp et al. [1994] for a

review of the literature. The viscosity of the 1983-1984

Pu'u O'o flows has been measured by Fink and Zimbelman

[1990] to have increased approximately 2 or 3 orders of

magnitude during emplacement- Moore and Ackerman [1989]
similarly estimate downstream viscosity increases of Kilauea

basalts to be 2 orders of magnitude. For basaltic flows from

Mount Etna, Booth and Self [1973] estimate viscosity

increases of 2 orders of magnitude over 4 kin. Thus the

downstream viscosity increases corresponding to the linear

and exponential viscosity profiles shown in Figures 8 and 9

are reasonable.
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Figure 7. Longitudinal profiles of flow half width as a
function of distance from source. Each plot shows a

comparison between the model's predicted profile based on

constant viscosity (solid lines) and the measured profile
based on remote sensing data (pluses). The calculated

profiles correspond to m=l (bottom curve) and m=2 (top
curve). Remote sensing data are of (a) SP flow, (b) Marcath

Flow, Lunar Crater, and (e) La Porufia flow. In all cases, the

data are steeper than the given theoretical profiles based on
constant viscosity.

Figure 8. Longitudinal profiles of flow half width as a

function of distance from source. Each plot shows a
comparison between the model's predicted profile based on
linear viscosity (solid lines) and the measured profile based

on remote sensing data (pluses). The calculated profiles

correspond to m=l (bottom curve) and m=2 (top curve). For
both profiles, L_t=50, which corresponds to a downstream
viscosity increase of -2 orders of magnitude over 4 kin.

Remote sensing data are of (a) SP flow, (b) Marcath Flow,

Lunar Crater, and (c) La Porufia flow. Data of all three flows
are better approximated by this linear viscosity model than
the constant viscosity model shown in Figure 7.
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Conclusions

Steady State Similarity Solution

Using a similarity transformation, we found an exact

analytic solution in the steady state for gravity-driven flows
on an inclined plane. In formulating the governing

equation, we assumed that volume is conserved and that the

magmastatic pressure gradient in the downstream direction is
small relative to the influence of gravity. Our solution

predicts downstream changes in flow depth and width for
different rheological characteristics based on known or

assumed initial parameters.

Non-Newtonlan Rheology

Figure 5 shows a comparison of longitudinal width

profiles of sample field data and model predictions,

assuming constant viscosity. The majority of these field
x in meters
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Figure 9. Longitudinal profiles of flow half width as a
function of distance from source. Each plot shows a

comparison between the model's predicted profile based on
exponential viscosity (solid lines) and the measured profile
based on remote sensing data (pluses). The calculated

profiles correspond to m=l (bottom curve) and m=2 (top
curve). For both nrofiles, Lot =500, which corresponds to a
downstream viscosity increase of 3-4 orders of magnitude

over 4 kin. Remote sensing data are of (a) SP flow, (b)

Marcath Flow, Lunar Crater, and (c) La Porufia flow. The

data in Figures 9a and 9b are better approximated by this

exponential viscosity model than the constant viscosity

model shown in Figure 7.

data are well approximated by the constant viscosity model,

for m between 1 and 2. This indicates non-Newtonian

rheology, as Newtonian fluids are characterized by m=3.

This is in agreement with numerous field and laboratory

studies of basaltic lavas which indicate the presence of a

yield strength [e.g., Shaw et al., 1968; Shaw, 1969;
pinkerton and Sparks, 1978]. Physically, the relatively low

m values of these basaltic flows indicate relatively thin

flows, compared with Newtonian flows emplaced at the same

flow rate.

Downstream Viscosity Increases

Using m values of 1 and 2, we ran the model for three

end-member approximations of ix" corresponding to

constant, linearly increasing and exponentially increasing

viscosity. The remote sensing data are inconsistent with

the moders predictions for constant viscosity (constant c0.

Instead, they are better approximated by linear or

exponential models corresponding to downstream viscosity
increases of 2-4 orders of magnitude, over a distance of 4

kin. The reasonableness of these values attests to the

validity of this model.

Notation

q

X

z

t

ot

_o
h

ho

w

wo
b

m

g
v
0

f(o)

volumetric flow rate per unit width.

spatial coordinate in the downstream direction

(parallel to slope).

spatial coordinate in the cross-stream direction

(perpendicular to slope).

spatial coordinate related to x, defined in

equation (13).

time.

a spatially dependent, empirically determined

rheological parameter.

ct at the source.

flow depth.
flow depth at the source.

flow half width.

flow half width at the source.

an empirically determined constant.
an empirically determined positive constant.

gravitational acceleration.
kinematic viscosity.

slope.
some function of slope.
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characteristic length scale.

scaling factor for 0t.

constants of similarity construct, defined in

terms of m in equation (26).

variables of similarity construct, defined in

equations (15) and (16).
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